Zobrazit minimální záznam

dc.contributor.authorJia, Han-Dong
dc.contributor.authorChu, Shu-Chuan
dc.contributor.authorHu, Pei
dc.contributor.authorKong, LingPing
dc.contributor.authorWang, XiaoPeng
dc.contributor.authorSnášel, Václav
dc.contributor.authorJiang, Tong-Bang
dc.contributor.authorPan, Jeng-Shyang
dc.date.accessioned2022-06-22T12:13:50Z
dc.date.available2022-06-22T12:13:50Z
dc.date.issued2022
dc.identifier.citationTelecommunication Systems. 2022, vol. 80, issue 1, p. 105-121.cs
dc.identifier.issn1018-4864
dc.identifier.issn1572-9451
dc.identifier.urihttp://hdl.handle.net/10084/146309
dc.description.abstractWith the continuous development of evolutionary computing, many excellent algorithms have emerged, which are applied in all walks of life to solve various practical problems. In this paper, two hybrid fish, bird and insect algorithms based on different architectures are proposed to solve the optimal coverage problem in wireless sensor networks. The algorithm combines the characteristics of three algorithms, namely, particle swarm optimization algorithm, Phasmatodea population evolution algorithm and fish migration optimization algorithm. The new algorithm has the advantages of the three algorithms. In order to prove the effectiveness of the algorithm, we first test it on 28 benchmark functions. The results show that the two hybrid fish, bird and insect algorithms with different architectures have significant advantages. Then we apply the proposed algorithm to solve the coverage problem of wireless sensor networks through experimental simulation. The experimental results show the advantages of our proposed algorithm and prove that our proposed hybrid fish, bird and insect algorithm is suitable for solving the coverage problem of wireless sensor networks.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesTelecommunication Systemscs
dc.relation.urihttps://doi.org/10.1007/s11235-022-00883-5cs
dc.rightsCopyright © 2022, The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Naturecs
dc.subjectevolutionary computationcs
dc.subjectPhasmatodea population evolution algorithmcs
dc.subjectfish migration optimizationcs
dc.subjectcoverage problemcs
dc.subjectwireless sensor networkcs
dc.titleHybrid algorithm optimization for coverage problem in wireless sensor networkscs
dc.typearticlecs
dc.identifier.doi10.1007/s11235-022-00883-5
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume80cs
dc.description.issue1cs
dc.description.lastpage121cs
dc.description.firstpage105cs
dc.identifier.wos000782004700008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam