Zobrazit minimální záznam

dc.contributor.authorAli, Sadaqat
dc.contributor.authorIrfan, Muhammad
dc.contributor.authorNiazi, Usama Muhammad
dc.contributor.authorRani, Ahmad Majdi Abdul
dc.contributor.authorRashedi, Ahmad
dc.contributor.authorRahman, Saifur
dc.contributor.authorKhan, Muhammad Kamal Asif
dc.contributor.authorAlsaiari, Mabkhoot A.
dc.contributor.authorLegutko, Stanislaw
dc.contributor.authorPetrů, Jana
dc.contributor.authorTrefil, Antonín
dc.date.accessioned2022-06-28T08:58:00Z
dc.date.available2022-06-28T08:58:00Z
dc.date.issued2022
dc.identifier.citationMaterials. 2022, vol. 15, issue 8, art. no. 2822.cs
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/10084/146325
dc.description.abstractAISI 316L stainless steel (SS) is one of the extensively used biomaterials to produce implants and medical devices. It provides a low-cost solution with ample mechanical properties, corrosion resistance, and biocompatibility compared to its counterpart materials. However, the implants made of this material are subjected to a short life span in human physiological conditions leading to the leaching of metal ions, thus limiting its use as a biomaterial. In this research, the addition of boron, titanium, and niobium with varying concentrations in the SS matrix has been explored. This paper explores the impact of material composition on modified SS alloy's physical and mechanical properties. The study's outcomes specify that the microhardness increases for all the alloy compositions, with a maximum increase of 64.68% for the 2 wt.% niobium added SS alloy. On the other hand, the tensile strength decreased to 297.40 MPa for the alloy containing 0.25 wt.% boron and 2 wt.% titanium additions compared to a tensile strength of 572.50 MPa for pure SS. The compression strength increased from 776 MPa for pure SS to 1408 MPa for the alloy containing niobium and titanium additions in equal concentrations.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMaterialscs
dc.relation.urihttps://doi.org/10.3390/ma15082822cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectAISI 316L stainless steelcs
dc.subjectmechanical propertiescs
dc.subjectmicrohardnesscs
dc.subjecttensile strengthcs
dc.subjectcompressive strengthcs
dc.titleMicrostructure and mechanical properties of modified 316L stainless steel alloy for biomedical applications using powder metallurgycs
dc.typearticlecs
dc.identifier.doi10.3390/ma15082822
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue8cs
dc.description.firstpageart. no. 2822cs
dc.identifier.wos000786327600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.