Zobrazit minimální záznam

dc.contributor.authorBasiaga, Marcin
dc.contributor.authorPaszenda, Zbigniew
dc.contributor.authorLisoń, Julia
dc.contributor.authorTaratuta, Anna
dc.contributor.authorKazek-Kęsik, Alicja
dc.contributor.authorKrok-Borkowicz, Małgorzata
dc.contributor.authorNuckowski, Paweł
dc.contributor.authorSzindler, Magdalena
dc.contributor.authorStaszuk, Marcin
dc.contributor.authorMajor, Łukasz
dc.contributor.authorMajor, Roman
dc.contributor.authorČech Barabaszová, Karla
dc.contributor.authorDyner, Marcin
dc.date.accessioned2022-07-04T05:56:34Z
dc.date.available2022-07-04T05:56:34Z
dc.date.issued2022
dc.identifier.citationArchives of Civil and Mechanical Engineering. 2022, vol. 22, issue 2, art. no. 93.cs
dc.identifier.issn1644-9665
dc.identifier.issn2083-3318
dc.identifier.urihttp://hdl.handle.net/10084/146336
dc.description.abstractA promising strategy for fighting the bacterial biofilm on the surface of biomaterials involves modification of their surface with the use of bactericidal and bacteriostatic coatings. Ongoing studies concentrate on the development of material that can limit bacterial colonisation and is safe for the human organism. Therefore, the current research focuses on the conditions related to implant coating to limit biofilm formation. However, previous outcomes in this area have not been satisfactory. Accordingly, the main goal of the carried out tests was to study the impact of the physicochemical properties of the surface layers on the course of processes taking place on the surface of implants made of metallic biomaterials used in the bone system. The surface of the analysed biomaterial-316LVM steel-was modified using such processes as grinding, electrochemical polishing, sandblasting, application of a ZnO layer using low-temperature Atomic Layer Deposition (ALD), and medical sterilisation. Initial assessments involved the chemical composition, phase composition, and the microstructure of the surface layer. The last stage involved microbiological studies, including an assessment of the adhesion of Gram-positive and Gram-negative bacteria to the modified surface, proliferation of MG-63 osteoblast-like cells and cytotoxicity tests. The analysis of adhesion of S. aureus and E. coli colonies confirmed that the ZnO coating is effective in reducing bacterial adhesion to the 316LVM steel substrate, regardless of the number of cycles, process temperature and surface treatment method.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesArchives of Civil and Mechanical Engineeringcs
dc.relation.urihttps://doi.org/10.1007/s43452-022-00414-8cs
dc.rightsCopyright © 2022, Wroclaw University of Science and Technologycs
dc.subjectALD methodcs
dc.subjectbiofilmcs
dc.subjectbiomaterialscs
dc.subjectsurface modificationcs
dc.titleMicrostructure and antibacterial properties of a ZnO coating on a biomaterial surfacecs
dc.typearticlecs
dc.identifier.doi10.1007/s43452-022-00414-8
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume22cs
dc.description.issue2cs
dc.description.firstpageart. no. 93cs
dc.identifier.wos000770768800003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam