Zobrazit minimální záznam

dc.contributor.authorLando, Tommaso
dc.date.accessioned2022-07-11T05:25:55Z
dc.date.available2022-07-11T05:25:55Z
dc.date.issued2022
dc.identifier.citationStatistical Papers. 2022.cs
dc.identifier.issn0932-5026
dc.identifier.issn1613-9798
dc.identifier.urihttp://hdl.handle.net/10084/146353
dc.description.abstractLet F, G be a pair of absolutely continuous cumulative distributions, where F is the distribution of interest and G is assumed to be known. The composition G(-1) circle F, which is referred to as the generalised hazard function of F with respect to G, provides a flexible framework for statistical inference of F under shape restrictions, determined by G, which enables the generalisation of some well-known models, such as the increasing hazard rate family. This paper is concerned with the problem of testing the null hypothesis H-0: "G(-1) circle F is convex". The test statistic is based on the distance between the empirical distribution function and a corresponding isotonic estimator, which is denoted as the greatest relatively-convex minorant of the empirical distribution with respect to G. Under H-0, this estimator converges uniformly to F, giving rise to a rather simple and general procedure for deriving families of consistent tests, without any support restriction. As an application, a goodness-of-fit test for the increasing hazard rate family is provided.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesStatistical Paperscs
dc.relation.urihttps://doi.org/10.1007/s00362-021-01273-wcs
dc.rightsCopyright © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.subjectnonparametric testcs
dc.subjectfailure ratecs
dc.subjectgreatest convex minorantcs
dc.titleTesting convexity of the generalised hazard functioncs
dc.typearticlecs
dc.identifier.doi10.1007/s00362-021-01273-w
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000739289800001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam