Show simple item record

dc.contributor.authorVerner, Adam
dc.contributor.authorTokarský, Jonáš
dc.contributor.authorČapková, Pavla
dc.contributor.authorRyšánek, Petr
dc.contributor.authorBenada, Oldřich
dc.contributor.authorHenych, Jiří
dc.contributor.authorTolasz, Jakub
dc.contributor.authorKormunda, Martin
dc.contributor.authorSyrový, Michal
dc.date.accessioned2022-07-14T07:45:29Z
dc.date.available2022-07-14T07:45:29Z
dc.date.issued2022
dc.identifier.citationPolymer Testing. 2022, vol. 110, art. no. 107568.cs
dc.identifier.issn0142-9418
dc.identifier.issn1873-2348
dc.identifier.urihttp://hdl.handle.net/10084/146386
dc.description.abstractLayered crystal structures tend to form flat platelet-like crystallites, and nanofibers having such a structure exhibit strip-like morphology. Crystallographic plane forming the dominant flat surface of the nanofibers can be used for surface modification with catalytically active nanoparticles capable of anchoring to the dominant flat surface. In this study, polyvinylidene fluoride (PVDF) nanofibers exhibiting strip-like morphology and longitudinal folding were prepared using wire electrospinning, and surface modified with CeO2 nanoparticles. Experimental characterization of the CeO2/PVDF membrane using (high-resolution) scanning electron microscopy and X-ray photoelectron spectroscopy was supplemented by a force field-based molecular modeling. The modeling has shown that the dominant PVDF(100) plane is suitable for anchoring the CeO2 nanoparticles. In this respect, the PVDF(100) plane is comparable to the less exposed fluorine-oriented PVDF(010) plane, and both planes show stronger interaction with CeO2 compared to hydrogen-oriented PVDF(010) plane. Molecular modeling also revealed preferred crystallographic orientations of anchored CeO2 nanoparticles: these are the catalytically active planes (100), (110), and (111). The successful surface modification and the finding that CeO2 nanoparticles on the dominant PVDF(100) surface can preferentially exhibit these crystallographic orientations thus provides the possibility of various practical applications of the CeO2/PVDF membrane.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesPolymer Testingcs
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2022.107568cs
dc.rights© 2022 The Authors. Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectpolyvinylidene fluoridecs
dc.subjectCeO2cs
dc.subjectnanofibercs
dc.subjectstructurecs
dc.subjectmorphologycs
dc.subjectmolecular simulationcs
dc.titleEffect of crystal structure on nanofiber morphology and chemical modification; design of CeO2/PVDF membranecs
dc.typearticlecs
dc.identifier.doi10.1016/j.polymertesting.2022.107568
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume110cs
dc.description.firstpageart. no. 107568cs
dc.identifier.wos000789618000003


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier Ltd.
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier Ltd.