Zobrazit minimální záznam

dc.contributor.authorPan, Jeng-Shyang
dc.contributor.authorTian, Ai-Qing
dc.contributor.authorSnášel, Václav
dc.contributor.authorKong, Lingping
dc.contributor.authorChu, Shu-Chuan
dc.date.accessioned2022-07-15T07:19:51Z
dc.date.available2022-07-15T07:19:51Z
dc.date.issued2022
dc.identifier.citationEnergy. 2022, vol. 251, art. no. 123863.cs
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.urihttp://hdl.handle.net/10084/146392
dc.description.abstractThe simulation, control and optimization of photovoltaic (PV) modules require the extraction of parameters from actual data and the construction of highly accurate PV cells. Multiple PV modules supplying power to a common load is the most common form of power distribution in PV systems. In these PV systems, providing separate maximum power point tracking (MPPT) technology for each PV module would increase the cost of the entire system. Determining how to accurately identify the internal parameter information of the PV modules and control the MPPT technology is the problem solved in this paper. we proposes an improved pigeon-inspired optimization (PIO) algorithm based on Taguchi method to solve the above problems. In this paper, we use the CEC2014 test library for testing and cross-sectional comparison. Experimental results show that the PIO algorithm based on Taguchi method is more competitive than other algorithms. The proposed algorithm uses measurement data to extract the unknown parameter in the PV modules and then uses this information to optimize the MPPT of all PV systems under partially shaded conditions (PSCs). Simulation results demonstrate the fitness value of the unknown parameters extracted by TPIO is 9.7525 x 10(-4), which is better than the compared algorithms.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEnergycs
dc.relation.urihttps://doi.org/10.1016/j.energy.2022.123863cs
dc.rights© 2022 Elsevier Ltd. All rights reserved.cs
dc.subjectpigeon-inspired optimizationcs
dc.subjectmaximum power point trackingcs
dc.subjectpartially shaded conditionscs
dc.subjectparameters estimationcs
dc.subjectphotovoltaic (PV) systemcs
dc.subjectTaguchi methodcs
dc.titleMaximum power point tracking and parameter estimation for multiple-photovoltaic arrays based on enhanced pigeon-inspired optimization with Taguchi methodcs
dc.typearticlecs
dc.identifier.doi10.1016/j.energy.2022.123863
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume251cs
dc.description.firstpageart. no. 123863cs
dc.identifier.wos000798564200008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam