Zobrazit minimální záznam

dc.contributor.authorTichý, Tomáš
dc.contributor.authorNguyen, Linh
dc.contributor.authorHolčapek, Michal
dc.contributor.authorKresta, Aleš
dc.contributor.authorDvořáčková, Hana
dc.date.accessioned2022-09-09T09:00:02Z
dc.date.available2022-09-09T09:00:02Z
dc.date.issued2022
dc.identifier.citationExpert Systems with Applications. 2022, vol. 203, art. no. 117345.cs
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttp://hdl.handle.net/10084/148604
dc.description.abstractReliable estimation of customer demand for products and services constitutes a key aspect of financial planning in every company. When estimating future sales, as a proxy to demand, in addition to pure economic quantities, a large selection of (exogenous) variables specific to a given product can be considered. Potential impact of weather conditions on sales has been known for very long time, though the research using weather data has been mostly focused on energy sector. As concerns retail, several authors have started to analyze this issue only recently. This paper proposes a novel approach studying (quarterly) sales using weather data and is inspired by fuzzy natural logic. The method is based on modeling the influence of average temperatures on sales by fuzzy linguistic IF-THEN rules. The proposed methodology is applied to real data of quarterly ice-cream sales and compared with a standard approach. The results are promising especially when monthly average temperatures are considered.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesExpert Systems with Applicationscs
dc.relation.urihttps://doi.org/10.1016/j.eswa.2022.117345cs
dc.rights© 2022 Elsevier Ltd. All rights reserved.cs
dc.subjectforecastingcs
dc.subjectsalescs
dc.subjectweathercs
dc.subjectfuzzy setscs
dc.subjectfuzzy natural logiccs
dc.titleQuarterly sales analysis using linguistic fuzzy logic with weather datacs
dc.typearticlecs
dc.identifier.doi10.1016/j.eswa.2022.117345
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume203cs
dc.description.firstpageart. no. 117345cs
dc.identifier.wos000804981700006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam