Zobrazit minimální záznam

dc.contributor.authorPan, Jeng-Shyang
dc.contributor.authorZhang, Li-Gang
dc.contributor.authorWang, Ruo-Bin
dc.contributor.authorSnášel, Václav
dc.contributor.authorChu, Shu-Chuan
dc.date.accessioned2022-09-27T13:43:25Z
dc.date.available2022-09-27T13:43:25Z
dc.date.issued2022
dc.identifier.citationMathematics and Computers in Simulation. 2022, vol. 202, issue 7, p. 343-373.cs
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.urihttp://hdl.handle.net/10084/148652
dc.description.abstractEngineering design problems are usually large-scale constrained optimization problems, and metaheuristic algorithms are vital for solving such complex problems. Therefore, this paper introduces a new nature-inspired metaheuristic algorithm: the gannet optimization algorithm (GOA). The GOA mathematizes the various unique behaviors of gannets during foraging and is used to enable exploration and exploitation. GOA's U-shaped and V-shaped diving patterns are responsible for exploring the optimal region within the search space, with sudden turns and random walks ensuring better solutions are found in this region. In order to verify the ability of the GOA to find the optimal solution, we compared it with other comparison algorithms in multiple dimensions of 28 benchmark functions. We found that the GOA has a shorter running time in high dimensions and can provide a better solution. Finally, we apply the GOA to five engineering optimization problems. The experimental results show that the GOA is suitable for many constrained engineering design problems and can provide better solutions in most cases.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMathematics and Computers in Simulationcs
dc.relation.urihttps://doi.org/10.1016/j.matcom.2022.06.007cs
dc.rights© 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.cs
dc.subjectgannet optimization algorithmcs
dc.subjectoptimization algorithmscs
dc.subjectswarm intelligencecs
dc.subjectevolutionary computationcs
dc.titleGannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problemscs
dc.typearticlecs
dc.identifier.doi10.1016/j.matcom.2022.06.007
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume202cs
dc.description.lastpage373cs
dc.description.firstpage343cs
dc.identifier.wos000822807100002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam