Zobrazit minimální záznam

dc.contributor.authorJahan, Ibrahim Salem
dc.contributor.authorBlažek, Vojtěch
dc.contributor.authorMišák, Stanislav
dc.contributor.authorSnášel, Václav
dc.contributor.authorProkop, Lukáš
dc.date.accessioned2022-10-06T14:20:06Z
dc.date.available2022-10-06T14:20:06Z
dc.date.issued2022
dc.identifier.citationEnergies. 2022, vol. 15, issue 14, art. no. 5251.cs
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10084/148691
dc.description.abstractOff-grid power systems are often used to supply electricity to remote households, cottages, or small industries, comprising small renewable energy systems, typically a photovoltaic plant whose energy supply is stochastic in nature, without electricity distributions. This approach is economically viable and conforms to the requirements of the European Green Deal and the Fit for 55 package. Furthermore, these systems are associated with a lower short circuit power as compared with distribution grid traditional power plants. The power quality parameters (PQPs) of such small-scale off-grid systems are largely determined by the inverter's ability to handle the impact of a device; however, this makes it difficult to accurately forecast the PQPs. To address this issue, this work compared prediction models for the PQPs as a function of the meteorological conditions regarding the off-grid systems for small-scale households in Central Europe. To this end, seven models-the artificial neural network (ANN), linear regression (LR), interaction linear regression (ILR), quadratic linear regression (QLR), pure quadratic linear regression (PQLR), the bagging decision tree (DT), and the boosting DT-were considered for forecasting four PQPs: frequency, the amplitude of the voltage, total harmonic distortion of the voltage (THDu), and current (THDi). The computation times of these forecasting models and their accuracies were also compared. Each forecasting model was used to forecast the PQPs for three sunny days in August. As a result of the study, the most accurate methods for forecasting are DTs. The ANN requires the longest computational time, and conversely, the LR takes the shortest computational time. Notably, this work aimed to predict poor PQPs that could cause all the equipment in off-grid systems to respond in advance to disturbances. This study is expected to be beneficial for the off-grid systems of small households and the substations included in existing smart grids.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesEnergiescs
dc.relation.urihttps://doi.org/10.3390/en15145251cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectforecastingcs
dc.subjectrenewable energycs
dc.subjectmeteorological datacs
dc.subjectoff-grid systemcs
dc.subjectsmart gridcs
dc.titleForecasting of power quality parameters based on meteorological data in small-scale household off-grid systemscs
dc.typearticlecs
dc.identifier.doi10.3390/en15145251
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue14cs
dc.description.firstpageart. no. 5251cs
dc.identifier.wos000833243800001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.