Zobrazit minimální záznam

dc.contributor.authorGayathri, Rajakumaran
dc.contributor.authorRani, Shola Usha
dc.contributor.authorČepová, Lenka
dc.contributor.authorRajesh, Murugesan
dc.contributor.authorKalita, Kanak
dc.date.accessioned2022-10-10T06:50:06Z
dc.date.available2022-10-10T06:50:06Z
dc.date.issued2022
dc.identifier.citationProcesses. 2022, vol. 10, issue 7, art. no. 1387.cs
dc.identifier.issn2227-9717
dc.identifier.urihttp://hdl.handle.net/10084/148698
dc.description.abstractPredicting the mechanical properties of cement-based mortars is essential in understanding the life and functioning of structures. Machine learning (ML) algorithms in this regard can be especially useful in prediction scenarios. In this paper, a comprehensive comparison of nine ML algorithms, i.e., linear regression (LR), random forest regression (RFR), support vector regression (SVR), AdaBoost regression (ABR), multi-layer perceptron (MLP), gradient boosting regression (GBR), decision tree regression (DT), hist gradient boosting regression (hGBR) and XGBoost regression (XGB), is carried out. A multi-attribute decision making method called TOPSIS (technique for order of preference by similarity to ideal solution) is used to select the best ML metamodel. A large dataset on cement-based mortars consisting of 424 sample points is used. The compressive strength of cement-based mortars is predicted based on six input parameters, i.e., the age of specimen (AS), the cement grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B), the superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S). XGBoost regression is found to be the best ML metamodel while simple metamodels like linear regression (LR) are found to be insufficient in handling the non-linearity in the process. This mapping of the compressive strength of mortars using ML techniques will be helpful for practitioners and researchers in identifying suitable mortar mixes.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesProcessescs
dc.relation.urihttps://doi.org/10.3390/pr10071387cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmachine learningcs
dc.subjectpredictive modelscs
dc.subjectcompressive strengthcs
dc.subjectregressioncs
dc.subjectTOPSIScs
dc.titleA comparative analysis of machine learning models in prediction of mortar compressive strengthcs
dc.typearticlecs
dc.identifier.doi10.3390/pr10071387
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue7cs
dc.description.firstpageart. no. 1387cs
dc.identifier.wos000831902300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.