Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorBrzobohatý, Tomáš
dc.contributor.authorVlach, Oldřich
dc.contributor.authorŘíha, Lubomír
dc.date.accessioned2022-10-10T08:25:49Z
dc.date.available2022-10-10T08:25:49Z
dc.date.issued2022
dc.identifier.citationNumerische Mathematik. 2022, vol. 152, issue 1, p. 41-66.cs
dc.identifier.issn0029-599X
dc.identifier.issn0945-3245
dc.identifier.urihttp://hdl.handle.net/10084/148702
dc.description.abstractThe hybrid FETI-DP method proposed by Klawonn and Rheinbach uses a two-level decomposition of the domain into subdomains and clusters. Here we give bounds on the regular condition number of the clusters obtained by interconnecting the Schur complements of square elastic subdomains by the average rigid body modes of adjacent edges. Using the angles of subspaces and bounds on the spectrum of the subdomains' Schur complements, we show that the conditioning of clusters comprising in x m square subdomains increases proportionally to m. The estimate supports the scalability of the unpreconditioned hybrid FETI-DP method for both linear and contact problems. The numerical experiments confirm the efficiency of a coarse grid split between the primal and dual variables and indicate that hybrid FETI-DP with large clusters is a competitive tool for solving huge elasticity problems.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesNumerische Mathematikcs
dc.relation.urihttps://doi.org/10.1007/s00211-022-01307-xcs
dc.rightsCopyright © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.titleOn the spectrum of Schur complements of 2D elastic clusters joined by rigid edge modes and hybrid domain decompositioncs
dc.typearticlecs
dc.identifier.doi10.1007/s00211-022-01307-x
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume152cs
dc.description.issue1cs
dc.description.lastpage66cs
dc.description.firstpage41cs
dc.identifier.wos000838464900001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam