Zobrazit minimální záznam

dc.contributor.authorKakouche, Khoudir
dc.contributor.authorRekioua, Toufik
dc.contributor.authorMezani, Smail
dc.contributor.authorOubelaid, Adel
dc.contributor.authorRekioua, Djamila
dc.contributor.authorBlažek, Vojtěch
dc.contributor.authorProkop, Lukáš
dc.contributor.authorMišák, Stanislav
dc.contributor.authorBajaj, Mohit
dc.contributor.authorGhoneim, Sherif S. M.
dc.date.accessioned2022-10-10T09:19:13Z
dc.date.available2022-10-10T09:19:13Z
dc.date.issued2022
dc.identifier.citationSensors. 2022, vol. 22, issue 15, art. no. 5669.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/148708
dc.description.abstractThis paper proposes a novel Fuzzy-MPDTC control applied to a fuel cell battery electric vehicle whose traction is ensured using a permanent magnet synchronous motor (PMSM). On the traction side, model predictive direct torque control (MPDTC) is used to control PMSM torque, and guarantee minimum torque and current ripples while ensuring satisfactory speed tracking. On the sources side, an energy management strategy (EMS) based on fuzzy logic is proposed, it aims to distribute power over energy sources rationally and satisfy the load power demand. To assess these techniques, a driving cycle under different operating modes, namely cruising, acceleration, idling and regenerative braking is proposed. Real-time simulation is developed using the RT LAB platform and the obtained results match those obtained in numerical simulation using MATLAB/Simulink. The results show a good performance of the whole system, where the proposed MPDTC minimized the torque and flux ripples with 54.54% and 77%, respectively, compared to the conventional DTC and reduced the THD of the PMSM current with 53.37%. Furthermore, the proposed EMS based on fuzzy logic shows good performance and keeps the battery SOC within safe limits under the proposed speed profile and international NYCC driving cycle. These aforementioned results confirm the robustness and effectiveness of the proposed control techniques.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s22155669cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfuzzy logiccs
dc.subjectmodel predictive direct torque controlcs
dc.subjectfuel cellcs
dc.subjectbatterycs
dc.subjectpermanent magnet synchronous motorcs
dc.subjectelectric vehiclecs
dc.titleModel predictive direct torque control and fuzzy logic energy management for multi power source electric vehiclescs
dc.typearticlecs
dc.identifier.doi10.3390/s22155669
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume22cs
dc.description.issue15cs
dc.description.firstpageart. no. 5669cs
dc.identifier.wos000839752600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.