Show simple item record

dc.contributor.authorAbdulkareem, Karrar Hameed
dc.contributor.authorMutlag, Ammar Awad
dc.contributor.authorDinar, Ahmed Musa
dc.contributor.authorFrnda, Jaroslav
dc.contributor.authorMohammed, Mazin Abed
dc.contributor.authorZayr, Fawzi Hasan
dc.contributor.authorLakhan, Abdullah
dc.contributor.authorKadry, Seifedine
dc.contributor.authorKhattak, Hasan Ali
dc.contributor.authorNedoma, Jan
dc.date.accessioned2022-10-12T08:39:24Z
dc.date.available2022-10-12T08:39:24Z
dc.date.issued2022
dc.identifier.citationComputational Intelligence and Neuroscience. 2022, vol. 2022, art. no. 5012962.cs
dc.identifier.issn1687-5265
dc.identifier.issn1687-5273
dc.identifier.urihttp://hdl.handle.net/10084/148729
dc.description.abstractCOVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient's condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.cs
dc.language.isoencs
dc.publisherHindawics
dc.relation.ispartofseriesComputational Intelligence and Neurosciencecs
dc.relation.urihttps://doi.org/10.1155/2022/5012962cs
dc.rightsCopyright © 2022 Karrar Hameed Abdulkareem et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleSmart healthcare system for severity prediction and critical tasks management of COVID-19 patients in IoT-fog computing environmentscs
dc.typearticlecs
dc.identifier.doi10.1155/2022/5012962
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume2022cs
dc.description.firstpageart. no. 5012962cs
dc.identifier.wos000835188300017


Files in this item

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022 Karrar Hameed Abdulkareem et al.  is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as Copyright © 2022 Karrar Hameed Abdulkareem et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.