Zobrazit minimální záznam

dc.contributor.authorŠimoník, Marek
dc.contributor.authorKrumnikl, Michal
dc.date.accessioned2022-10-17T08:08:03Z
dc.date.available2022-10-17T08:08:03Z
dc.date.issued2022
dc.identifier.citationMachine Vision and Applications. 2022, vol. 33, issue 5, art. no. 78.cs
dc.identifier.issn0932-8092
dc.identifier.issn1432-1769
dc.identifier.urihttp://hdl.handle.net/10084/148782
dc.description.abstractWe present CrossInfoMobileNet, a hand pose estimation convolutional neural network based on CrossInfoNet, specifically tuned to mobile phone processors through the optimization, modification, and replacement of computationally critical CrossInfoNet components. By introducing a state-of-the-art MobileNetV3 network as a feature extractor and refiner, replacing ReLU activation with a better performing H-Swish activation function, we have achieved a network that requires 2.37 times less multiply-add operations and 2.22 times less parameters than the CrossInfoNet network, while maintaining the same error on the state-of-the-art datasets. This reduction of multiply-add operations resulted in an average 1.56 times faster real-world performance on both desktop and mobile devices, making it more suitable for embedded applications. The full source code of CrossInfoMobileNet including the sample dataset and its evaluation is available online through Code Ocean.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesMachine Vision and Applicationscs
dc.relation.urihttps://doi.org/10.1007/s00138-022-01332-8cs
dc.rightsCopyright © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Naturecs
dc.subjectconvolutional neural networkcs
dc.subjectfeature extractorcs
dc.subjecthand pose estimationcs
dc.titleOptimized hand pose estimation CrossInfoNet-based architecture for embedded devicescs
dc.typearticlecs
dc.identifier.doi10.1007/s00138-022-01332-8
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume33cs
dc.description.issue5cs
dc.description.firstpageart. no. 78cs
dc.identifier.wos000840318400001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam