Zobrazit minimální záznam

dc.contributor.authorDey, Alokananda
dc.contributor.authorBhattacharyya, Siddhartha
dc.contributor.authorDey, Sandip
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2022-10-17T11:12:42Z
dc.date.available2022-10-17T11:12:42Z
dc.date.issued2022
dc.identifier.citationApplied Intelligence. 2022.cs
dc.identifier.issn0924-669X
dc.identifier.issn1573-7497
dc.identifier.urihttp://hdl.handle.net/10084/148785
dc.description.abstractThis work explores the effectiveness and robustness of quantum computing by conjoining the principles of quantum computing with the conventional computational paradigm for the automatic clustering of colour images. In order to develop such a computationally efficient algorithm, two population-based meta-heuristic algorithms, viz., Particle Swarm Optimization (PSO) algorithm and Enhanced Particle Swarm Optimization (EPSO) algorithm have been consolidated with the quantum computing framework to yield the Quantum Inspired Particle Swarm Optimization (QIPSO) algorithm and the Quantum Inspired Enhanced Particle Swarm Optimization (QIEPSO) algorithm, respectively. This paper also presents a comparison between the proposed quantum inspired algorithms with their corresponding classical counterparts and also with three other evolutionary algorithms, viz., Artificial Bee Colony (ABC), Differential Evolution (DE) and Covariance Matrix Adaption Evolution Strategies (CMA-ES). In this paper, twenty different sized colour images have been used for conducting the experiments. Among these twenty images, ten are Berkeley images and ten are real life colour images. Three cluster validity indices, viz., PBM, CS-Measure (CSM) and Dunn index (DI) have been used as objective functions for measuring the effectiveness of clustering. In addition, in order to improve the performance of the proposed algorithms, some participating parameters have been adjusted using the Sobol's sensitivity analysis test. Four segmentation evaluation metrics have been used for quantitative evaluation of the proposed algorithms. The effectiveness and efficiency of the proposed quantum inspired algorithms have been established over their conventional counterparts and the three other competitive algorithms with regards to optimal computational time, convergence rate and robustness.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesApplied Intelligencecs
dc.relation.urihttps://doi.org/10.1007/s10489-022-03806-8cs
dc.rightsCopyright © 2022, The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Naturecs
dc.subjectautomatic clusteringcs
dc.subjectenhanced particle swarm optimizationcs
dc.subjectquantum computingcs
dc.subjectSobol's sensitivity analysiscs
dc.subjectsegmentation evaluation metricscs
dc.titleAutomatic clustering of colour images using quantum inspired meta-heuristic algorithmscs
dc.typearticlecs
dc.identifier.doi10.1007/s10489-022-03806-8
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000840062800001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam