Zobrazit minimální záznam

dc.contributor.authorAbouEl-Magd, Lobna M.
dc.contributor.authorDarwish, Ashraf
dc.contributor.authorSnášel, Václav
dc.contributor.authorHassanien, Aboul Ella
dc.date.accessioned2022-10-24T09:09:57Z
dc.date.available2022-10-24T09:09:57Z
dc.date.issued2022
dc.identifier.citationCluster Computing. 2022.cs
dc.identifier.issn1386-7857
dc.identifier.issn1573-7543
dc.identifier.urihttp://hdl.handle.net/10084/148796
dc.description.abstractCoronavirus disease (COVID-19) is rapidly spreading worldwide. Recent studies show that radiological images contain accurate data for detecting the coronavirus. This paper proposes a pre-trained convolutional neural network (VGG16) with Capsule Neural Networks (CapsNet) to detect COVID-19 with unbalanced data sets. The CapsNet is proposed due to its ability to define features such as perspective, orientation, and size. Synthetic Minority Over-sampling Technique (SMOTE) was employed to ensure that new samples were generated close to the sample center, avoiding the production of outliers or changes in data distribution. As the results may change by changing capsule network parameters (Capsule dimensionality and routing number), the Gaussian optimization method has been used to optimize these parameters. Four experiments have been done, (1) CapsNet with the unbalanced data sets, (2) CapsNet with balanced data sets based on class weight, (3) CapsNet with balanced data sets based on SMOTE, and (4) CapsNet hyperparameters optimization with balanced data sets based on SMOTE. The performance has improved and achieved an accuracy rate of 96.58% and an F1- score of 97.08%, a competitive optimized model compared to other related models.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesCluster Computingcs
dc.relation.urihttps://doi.org/10.1007/s10586-022-03703-2cs
dc.rightsCopyright © 2022, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectCOVID-19cs
dc.subjectcoronaviruscs
dc.subjectconvolutional neural networkscs
dc.subjectcapsule neural networkscs
dc.subjectVGG16cs
dc.subjectGaussian optimization methodcs
dc.titleA pre-trained convolutional neural network with optimized capsule networks for chest X-rays COVID-19 diagnosiscs
dc.typearticlecs
dc.identifier.doi10.1007/s10586-022-03703-2
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000843429400005


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2022, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2022, The Author(s)