Zobrazit minimální záznam

dc.contributor.authorUher, Vojtěch
dc.contributor.authorDráždilová, Pavla
dc.contributor.authorPlatoš, Jan
dc.contributor.authorBaďura, Petr
dc.date.accessioned2022-10-24T15:31:26Z
dc.date.available2022-10-24T15:31:26Z
dc.date.issued2022
dc.identifier.citationExpert Systems with Applications. 2022, vol. 206, art. no. 117809.cs
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttp://hdl.handle.net/10084/148802
dc.description.abstractThis article is focused on the automatic detection of the corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection. The questionnaire surveys are often used in psychology research to collect self-report data and their preprocessing takes a lot of manual effort. Unlike with numerical data where the distance-based outliers prevail, the records in questionnaires have to be assessed from various perspectives that do not relate so much. We identify the most frequent types of errors in questionnaires. For each of them, we suggest different outliers detection methods ranking the records with the usage of normalized scores. Considering the similarity between pairs of outlier scores (some are highly uncorrelated), we propose an ensemble based on the union of outliers detected by different methods. Our outlier detection framework consists of some well-known algorithms but we also propose novel approaches addressing the typical issues of questionnaires. The selected methods are based on distance, entropy, and probability. The experimental section describes the process of assembling the methods and selecting their parameters for the final model detecting significant outliers in the real-world HBSC dataset.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesExpert Systems with Applicationscs
dc.relation.urihttps://doi.org/10.1016/j.eswa.2022.117809cs
dc.rights© 2022 The Author(s). Published by Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectanomaly detectioncs
dc.subjectoutlierscs
dc.subjectquestionnaire datacs
dc.subjectdata cleaningcs
dc.subjectHBSCcs
dc.titleAutomation of cleaning and ensembles for outliers detection in questionnaire datacs
dc.typearticlecs
dc.identifier.doi10.1016/j.eswa.2022.117809
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume206cs
dc.description.firstpageart. no. 117809cs
dc.identifier.wos000841013700010


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 The Author(s). Published by Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 The Author(s). Published by Elsevier Ltd.