Zobrazit minimální záznam

dc.contributor.authorAshfaq, Muniba
dc.contributor.authorMinallah, Nasru
dc.contributor.authorFrnda, Jaroslav
dc.contributor.authorBeháň, Ladislav
dc.date.accessioned2022-11-01T11:51:47Z
dc.date.available2022-11-01T11:51:47Z
dc.date.issued2022
dc.identifier.citationSymmetry. 2022, vol. 14, issue 8, art. no. 1506.cs
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10084/148838
dc.description.abstractMedical image diagnosis and delineation of lesions in the human brain require information to combine from different imaging sensors. Image registration is considered to be an essential pre-processing technique of aligning images of different modalities. The brain is a naturally bilateral symmetrical organ, where the left half lobe resembles the right half lobe around the symmetrical axis. The identified symmetry axis in one MRI image can identify symmetry axes in multi-modal registered MRI images instantly. MRI sensors may induce different levels of noise and Intensity Non-Uniformity (INU) in images. These image degradations may cause difficulty in finding true transformation parameters for an optimization technique. We will be investigating the new variant of evolution strategy of genetic algorithm as an optimization technique that performs well even for the high level of noise and INU, compared to Nesterov, Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS), Simulated Annealing (SA), and Single-Stage Genetic Algorithm (SSGA). The proposed new multi-modal image registration technique based on a genetic algorithm with increasing precision levels and decreasing search spaces in successive stages is called the Multi-Stage Forward Path Regenerative Genetic Algorithm (MFRGA). Our proposed algorithm is better in terms of overall registration error as compared to the standard genetic algorithm. MFRGA results in a mean registration error of 0.492 in case of the same level of noise (1-9)% and INU (0-40)% in both reference and template image, and 0.317 in case of a noise-free template and reference with noise levels (1-9)% and INU (0-40)%. Accurate registration results in good segmentation, and we apply registration transformations to segment normal brain structures for evaluating registration accuracy. The brain segmentation via registration with our proposed algorithm is better even in cases of high levels of noise and INU as compared to GA and LBFGS. The mean dice similarity coefficient of brain structures CSF, GM, and WM is 0.701, 0.792, and 0.913, respectively.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSymmetrycs
dc.relation.urihttps://doi.org/10.3390/sym14081506cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectimage registrationcs
dc.subjectgenetic algorithmcs
dc.subjectMFRGAcs
dc.subjectmutual information (MI)cs
dc.titleMulti-modal rigid image registration and segmentation using multi-stage forward path regenerative genetic algorithmcs
dc.typearticlecs
dc.identifier.doi10.3390/sym14081506
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue8cs
dc.description.firstpageart. no. 1506cs
dc.identifier.wos000845250600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.