Zobrazit minimální záznam

dc.contributor.authorHatami-Marbini, Adel
dc.contributor.authorArabmaldar, Aliasghar
dc.contributor.authorToloo, Mehdi
dc.contributor.authorNehrani, Ali Mahmoodi
dc.date.accessioned2022-11-08T12:32:33Z
dc.date.available2022-11-08T12:32:33Z
dc.date.issued2022
dc.identifier.citationExpert Systems with Applications. 2022, vol. 207, art. no. 118023.cs
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttp://hdl.handle.net/10084/148873
dc.description.abstractRussell measure (RM) and enhanced Russell measure (ERM) are popular non-radial measures for efficiency assessment of decision-making units (DMUs) in data envelopment analysis (DEA). Input and output data of both original RM and ERM are assumed to be deterministic. However, this assumption may not be valid in some situations because of data uncertainty arising from measurement errors, data staleness, and multiple repeated measurements. Interval DEA (IDEA) has been proposed to measure the interval efficiencies from the optimistic and pessimistic viewpoints while the robustness of the assessment is questionable. This paper draws on a class of robust optimisation models to surmount uncertainty with a high degree of robustness in the RM and ERM models. The contribution of this paper is fivefold; (1) we develop new robust non-radial DEA models to measure the robust efficiency of DMUs under data uncertainty, which are adjustable based upon conservatism levels, (2) we use Monte-Carlo simulation in an attempt to identify an appropriate range for the budget of uncertainty in terms of the highest conformity of ranking results, (3) we introduce the concept of the price of robustness to scrutinise the effectiveness and robustness of the proposed models, (4) we compare the developed robust models in this paper with other existing approaches, both radial and non-radial models, and (5) we explore an application to assess the efficiency of the Master of Business Administration (MBA) programmes where data uncertainties in-fluence the quality and reliability of results.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesExpert Systems with Applicationscs
dc.relation.urihttps://doi.org/10.1016/j.eswa.2022.118023cs
dc.rights© 2022 Elsevier Ltd. All rights reserved.cs
dc.subjectdata envelopment analysiscs
dc.subjectrobust optimisationcs
dc.subjectinterval datacs
dc.subjectMBA programmescs
dc.subjectMonte-Carlo simulationcs
dc.titleRobust non-radial data envelopment analysis models under data uncertaintycs
dc.typearticlecs
dc.identifier.doi10.1016/j.eswa.2022.118023
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume207cs
dc.description.firstpageart. no. 118023cs
dc.identifier.wos000854960000001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam