Zobrazit minimální záznam

dc.contributor.authorWang, Xing
dc.contributor.authorPan, Jeng-Shyang
dc.contributor.authorYang, Qingyong
dc.contributor.authorKong, Lingping
dc.contributor.authorSnášel, Václav
dc.contributor.authorChu, Shu-Chuan
dc.date.accessioned2022-11-23T13:52:29Z
dc.date.available2022-11-23T13:52:29Z
dc.date.issued2022
dc.identifier.citationDrones. 2022, vol. 6, issue 5, art. no. 134.cs
dc.identifier.issn2504-446X
dc.identifier.urihttp://hdl.handle.net/10084/148912
dc.description.abstractThe unmanned aerial vehicle (UAV) path planning problem is primarily concerned with avoiding collision with obstacles while determining the best flight path to the target position. This paper first establishes a cost function to transform the UAV route planning issue into an optimization issue that meets the UAV's feasible path requirements and path safety constraints. Then, this paper introduces a modified Mayfly Algorithm (modMA), which employs an exponent decreasing inertia weight (EDIW) strategy, adaptive Cauchy mutation, and an enhanced crossover operator to effectively search the UAV configuration space and discover the path with the lowest overall cost. Finally, the proposed modMA is evaluated on 26 benchmark functions as well as the UAV route planning problem, and the results demonstrate that it outperforms the other compared algorithms.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesDronescs
dc.relation.urihttps://doi.org/10.3390/drones6050134cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0cs
dc.subjectpath planningcs
dc.subjectmodified mayfly algorithmcs
dc.subjectexponent decreasing inertia weightcs
dc.subjectadaptive Cauchy mutationcs
dc.subjectenhanced crossover operatorcs
dc.titleModified mayfly algorithm for UAV path planningcs
dc.typearticlecs
dc.identifier.doi10.3390/drones6050134
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume6cs
dc.description.issue5cs
dc.description.firstpageart. no. 134cs
dc.identifier.wos000804367200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.