Zobrazit minimální záznam

dc.contributor.authorZelinka, Ivan
dc.contributor.authorDiep, Quoc Bao
dc.contributor.authorSnášel, Václav
dc.contributor.authorDas, Swagatam
dc.contributor.authorInnocenti, Giacomo
dc.contributor.authorTesi, Alberto
dc.contributor.authorSchoen, Fabio
dc.contributor.authorKuznetsov, Nikolay V.
dc.date.accessioned2022-11-25T13:54:22Z
dc.date.available2022-11-25T13:54:22Z
dc.date.issued2022
dc.identifier.citationInformation Sciences. 2022, vol. 587, p. 692-719.cs
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.urihttp://hdl.handle.net/10084/148916
dc.description.abstractRandom mechanisms including mutations are an internal part of evolutionary algorithms, which are based on the fundamental ideas of Darwin's theory of evolution as well as Mendel's theory of genetic heritage. In this paper, we debate whether pseudo-random processes are needed for evolutionary algorithms or whether deterministic chaos, which is not a random process, can be suitably used instead. Specifically, we compare the performance of 10 evolutionary algorithms driven by chaotic dynamics and pseudo-random number generators using chaotic processes as a comparative study. In this study, the logistic equation is employed for generating periodical sequences of different lengths, which are used in evolutionary algorithms instead of randomness. We suggest that, instead of pseudorandom number generators, a specific class of deterministic processes (based on deterministic chaos) can be used to improve the performance of evolutionary algorithms. Finally, based on our findings, we propose new research questions.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInformation Sciencescs
dc.relation.urihttps://doi.org/10.1016/j.ins.2021.10.076cs
dc.rights© 2021 The Author(s). Published by Elsevier Inc.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectdeterministic chaoscs
dc.subjectswarm intelligencecs
dc.subjectevolutionary algorithmscs
dc.subjectalgorithm dynamicscs
dc.subjectalgorithm performancecs
dc.titleImpact of chaotic dynamics on the performance of metaheuristic optimization algorithms: An experimental analysiscs
dc.typearticlecs
dc.identifier.doi10.1016/j.ins.2021.10.076
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume587cs
dc.description.lastpage719cs
dc.description.firstpage692cs
dc.identifier.wos000796869000020


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2021 The Author(s). Published by Elsevier Inc.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2021 The Author(s). Published by Elsevier Inc.