Zobrazit minimální záznam

dc.contributor.authorVaňuš, Jan
dc.contributor.authorMartinek, Radek
dc.contributor.authorDanys, Lukáš
dc.contributor.authorNedoma, Jan
dc.contributor.authorBilík, Petr
dc.date.accessioned2022-11-29T12:26:48Z
dc.date.available2022-11-29T12:26:48Z
dc.date.issued2022
dc.identifier.citationHuman-Centric Computing and Information Sciences. 2022, vol. 12, art. no. 47.cs
dc.identifier.issn2192-1962
dc.identifier.urihttp://hdl.handle.net/10084/148928
dc.description.abstractTo detect whether people are occupying individual rooms in a smart home, a range of sensors and building automation technologies can be employed. For these technologies to function in tandem and exchange useful data in a smart home environment, they must be interoperable. The article presents a new interoperable solution which combines existing decentralized KNX building automation technology with a KNX/LabVIEW software application gateway using visible light communication to track occupancy in a room. The article also describes a novel KNX/IoT software application gateway which uses an MQTT protocol for interoperability between KNX technology and IBM Watson IoT platform. We conducted an experiment with the originally designed solution to detect occupancy in an office room. We used KNX and BACnet building automation technology to produce an interoperable KNX/BACnet hardware gateway which allowed the application of artificial neural network mathematical methods for CO2 waveform prediction. The best results in detecting occupancy in a room were R = 0.9548 (Levenberg-Marquardt algorithm), R = 0.9872 (Bayesian regularization algorithm), and R = 0.8409 (scaled conjugate gradient algorithm), which correspond to the results obtained by other authors and a minimum system prediction accuracy of 96%.cs
dc.language.isoencs
dc.publisherKorea Information Processing Societycs
dc.relation.ispartofseriesHuman-Centric Computing and Information Sciencescs
dc.relation.urihttps://doi.org/10.22967/HCIS.2022.12.047cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/cs
dc.subjectsmart homecs
dc.subjectsensorscs
dc.subjectbuilding automationcs
dc.subjectvisible light communicationcs
dc.subjectKNXcs
dc.subjectInternet of Thingscs
dc.subjectpredictioncs
dc.subjectinteroperabilitycs
dc.subjectoccupancycs
dc.subjectneural networkcs
dc.titleOccupancy detection in smart home space using interoperable building automation technologiescs
dc.typearticlecs
dc.identifier.doi10.22967/HCIS.2022.12.047
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.firstpageart. no. 47cs
dc.identifier.wos000869908300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by-nc/3.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by-nc/3.0/