Zobrazit minimální záznam

dc.contributor.authorNguyen, Bich-Ngan T.
dc.contributor.authorPham, Phuong N. H.
dc.contributor.authorLe, Van-Vang
dc.contributor.authorSnášel, Václav
dc.date.accessioned2022-12-05T14:35:28Z
dc.date.available2022-12-05T14:35:28Z
dc.date.issued2022
dc.identifier.citationMathematics. 2022, vol. 10, issue 20, art. no. 3772.cs
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10084/148955
dc.description.abstractIn recent years, the issue of maximizing submodular functions has attracted much interest from research communities. However, most submodular functions are specified in a set function. Meanwhile, recent advancements have been studied for maximizing a diminishing return submodular (DR-submodular) function on the integer lattice. Because plenty of publications show that the DR-submodular function has wide applications in optimization problems such as sensor placement impose problems, optimal budget allocation, social network, and especially machine learning. In this research, we propose two main streaming algorithms for the problem of maximizing a monotone DR-submodular function under cardinality constraints. Our two algorithms, which are called StrDRS1 and StrDRS2, have (1/2 - epsilon) , (1 - 1 /e - epsilon) of approximation ratios and O(n/epsilon log(log B/epsilon ) log k), O(n/epsilon log B), respectively. We conducted several experiments to investigate the performance of our algorithms based on the budget allocation problem over the bipartite influence model, an instance of the monotone submodular function maximization problem over the integer lattice. The experimental results indicate that our proposed algorithms not only provide solutions with a high value of the objective function, but also outperform the state-of-the-art algorithms in terms of both the number of queries and the running time.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMathematicscs
dc.relation.urihttps://doi.org/10.3390/math10203772cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0cs
dc.subjectDR-submodular functioncs
dc.subjectinteger latticecs
dc.subjectadaptive complexitycs
dc.subjectapproximation algorithmcs
dc.titleEfficient streaming algorithms for maximizing monotone DR-submodular function on the integer latticecs
dc.typearticlecs
dc.identifier.doi10.3390/math10203772
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.issue20cs
dc.description.firstpageart. no. 3772cs
dc.identifier.wos000875226800001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.