Zobrazit minimální záznam

dc.contributor.authorMalik, Usman Mahmood
dc.contributor.authorJaved, Muhammad Awais
dc.contributor.authorFrnda, Jaroslav
dc.contributor.authorNedoma, Jan
dc.date.accessioned2022-12-05T15:49:49Z
dc.date.available2022-12-05T15:49:49Z
dc.date.issued2022
dc.identifier.citationIEEE Access. 2022, vol. 10, p. 111579-111590.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/148957
dc.description.abstractFog computing is a key technology that supports timely and efficient computation of different tasks in IoT networks. By using the nearby fog nodes for quick task computation, application related decisions by IoT devices can be taken within the delay requirements. Resource allocation in terms of task placement on the free computing resources of the fog nodes is a major challenge in IoT networks. In this paper, we consider task offloading from IoT devices to the logically partitioned fog computing resources known as Virtual Resource Units (VRUs) to reduce the number of task outages and energy consumption of the IoT and fog nodes. We propose a two phased task offloading algorithm to minimize the number of task outages. In the first phase, we utilize the task deadline to compute the minimum number of resources required for a task from the fog nodes. To meet the heterogeneous task computing requirements, we introduce the concept of variable sized VRUs in the fog nodes. Moreover, we propose a modified Deferred Acceptance Algorithm (DAA) for stable matching between IoT tasks and variable sized VRUs. In the second phase of the algorithm, the unmatched fog node resources are distributed among the previously matched IoT tasks. Simulation results show that the proposed algorithm outperforms available techniques in the literature in terms of task outages and energy efficiency.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2022.3215555cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectfog computingcs
dc.subjectIoTcs
dc.subjecttask offloadingcs
dc.titleSMRETO: Stable matching for reliable and efficient task offloading in fog-enabled IoT networkscs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2022.3215555
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.lastpage111590cs
dc.description.firstpage111579cs
dc.identifier.wos000873684100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/