Zobrazit minimální záznam

dc.contributor.authorYan, Jin
dc.contributor.authorTian, Meng
dc.contributor.authorShi, Ruhua
dc.contributor.authorGu, Tianyi
dc.contributor.authorZeng, Kai
dc.contributor.authorZhou, Junhua
dc.contributor.authorZhang, Qian
dc.contributor.authorRümmeli, Mark H.
dc.contributor.authorYang, Ruizhi
dc.date.accessioned2023-02-02T10:55:10Z
dc.date.available2023-02-02T10:55:10Z
dc.date.issued2022
dc.identifier.citationMaterials Today Energy. 2022, vol. 30, art. no. 101171.cs
dc.identifier.issn2468-6069
dc.identifier.urihttp://hdl.handle.net/10084/149057
dc.description.abstractAtomically dispersed catalysts with high electrocatalytic performance are emerging as promising elec-trocatalysts for energy conversion and storage devices. Nevertheless, achieving superior bifunctional catalytic activity with single-atom catalysts toward reactions involving multi-intermediates is still facing great challenges. Herein, dual-atomic Fe-Ni pairs dispersed in hierarchical porous nitrogen-doped carbon (FeNi-HPNC) catalysts were successfully synthesized using a facile mechanochemical strategy. By virtue of the engineered electronic structure of Fe coordinated with Ni, the as-synthesized FeNi-HPNC with atomically dispersed dual-metal active sites and pore-rich structure exhibits remarkable bifunctional activities. A high half-wave potential of 0.868 V for oxygen reduction reaction and a low potential of 1.59 V at 10 mA/cm2 for oxygen evolution reaction have been obtained for FeNi-HPNC, which are superior to the single-atom catalysts of Fe-HPNC and Ni-HPNC, respectively, and are even greater than the precious metal catalysts. Combined experimental and theoretical results have revealed that the enhanced bifunctional catalytic activity of FeNi-HPNC is ascribed to the electronic interaction of Fe-Ni sites, which decreases the adsorption energy of oxygen intermediates during oxygen reduction reac-tion/oxygen evolution reaction. Furthermore, the practical application of FeNi-HPNC catalysts in Zn-air batteries has been demonstrated; a high peak power density and long-term durability are delivered.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesMaterials Today Energycs
dc.relation.urihttps://doi.org/10.1016/j.mtener.2022.101171cs
dc.rights© 2022 Elsevier Ltd. All rights reserved.cs
dc.subjectcatalystscs
dc.subjectdual-atomic Fe-Nixcs
dc.subjectmechanochemicalcs
dc.subjectoxygen reduction reactioncs
dc.subjectZn-air batterycs
dc.titleEnhanced dual atomic Fe-Ni sites in N-doped carbon for bifunctional oxygen electrocatalysiscs
dc.typearticlecs
dc.identifier.doi10.1016/j.mtener.2022.101171
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume30cs
dc.description.firstpageart. no. 101171cs
dc.identifier.wos000882774500004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam