Zobrazit minimální záznam

dc.contributor.authorKhan, Muhammad Abdullah
dc.contributor.authorNaqvi, Salman Raza
dc.contributor.authorTaqvi, Syed Ali Ammar
dc.contributor.authorShahbaz, Muhammad
dc.contributor.authorAli, Imtiaz
dc.contributor.authorMehran, Muhammad Taqi
dc.contributor.authorKhoja, Asif Hussain
dc.contributor.authorJuchelková, Dagmar
dc.date.accessioned2023-02-06T07:56:58Z
dc.date.available2023-02-06T07:56:58Z
dc.date.issued2022
dc.identifier.citationInternational Journal of Hydrogen Energy. 2022, vol. 47, issue 88, p. 37374-37384.cs
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.urihttp://hdl.handle.net/10084/149063
dc.description.abstractIn this work, air gasification of sewage sludge was conducted in a lab-scale bubbling fluidized bed gasifier. Further, the gasification process was modeled using artificial neural networks for the product gas composition with varying temperatures and equivalence ratios. Neural network-based prediction will help to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios. The gasification efficiency and lower heating values were also established as a function of temperatures and equivalence ratios. The maximum H2 and CO was recorded as 16.26 vol% and 33.55 vol %. Intraileally at ER 0.2 gas composition H2, CO, and CH4 show high concentrations of 20.56 vol%, 45.91 vol%, and 13.32 vol%, respectively. At the same time, CO2 was lower as 20.20 vol% at ER 0.2. Therefore, optimum values are suggested for maximum H2 and CO yield and lower concentration of CO2 at ER 0.25 and temperature of 850 degrees C. A predictive model based on an Artificial Neural network is also developed to predict the hydrogen production from product gas composition at various temperatures and equivalence ratios.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInternational Journal of Hydrogen Energycs
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2021.11.192cs
dc.rights© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.cs
dc.subjectsewage sludgecs
dc.subjectgasificationcs
dc.subjecthydrogencs
dc.subjectANNcs
dc.titleAir gasification of high-ash sewage sludge for hydrogen production: Experimental, sensitivity and predictive analysiscs
dc.typearticlecs
dc.identifier.doi10.1016/j.ijhydene.2021.11.192
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume47cs
dc.description.issue88cs
dc.description.lastpage37384cs
dc.description.firstpage37374cs
dc.identifier.wos000889311300016


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam