Nature inspired method for noninvasive fetal ECG extraction
dc.contributor.author | Raj, Akshaya | |
dc.contributor.author | Brablík, Jindřich | |
dc.contributor.author | Kahánková, Radana | |
dc.contributor.author | Jaroš, René | |
dc.contributor.author | Barnová, Kateřina | |
dc.contributor.author | Snášel, Václav | |
dc.contributor.author | Mirjalili, Seyedali | |
dc.contributor.author | Martinek, Radek | |
dc.date.accessioned | 2023-02-07T07:23:09Z | |
dc.date.available | 2023-02-07T07:23:09Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Scientific Reports. 2022, vol. 12, issue 1, art. no. 20159. | cs |
dc.identifier.issn | 2045-2322 | |
dc.identifier.uri | http://hdl.handle.net/10084/149071 | |
dc.description.abstract | This paper introduces a novel algorithm for effective and accurate extraction of non-invasive fetal electrocardiogram (NI-fECG). In NI-fECG based monitoring, the useful signal is measured along with other signals generated by the pregnant women's body, especially maternal electrocardiogram (mECG). These signals are more distinct in magnitude and overlap in time and frequency domains, making the fECG extraction extremely challenging. The proposed extraction method combines the Grey wolf algorithm (GWO) with sequential analysis (SA). This innovative combination, forming the GWO-SA method, optimises the parameters required to create a template that matches the mECG, which leads to an accurate elimination of the said signal from the input composite signal. The extraction system was tested on two databases consisting of real signals, namely, Labour and Pregnancy. The databases used to test the algorithms are available on a server at the generalist repositories (figshare) integrated with Matonia et al. (Sci Data 7(1):1-14, 2020). The results show that the proposed method extracts the fetal ECG signal with an outstanding efficacy. The efficacy of the results was evaluated based on accurate detection of the fQRS complexes. The parameters used to evaluate are as follows: accuracy (ACC), sensitivity (SE), positive predictive value (PPV), and F1 score. Due to the stochastic nature of the GWO algorithm, ten individual runs were performed for each record in the two databases to assure stability as well as repeatability. Using these parameters, for the Labour dataset, we achieved an average ACC of 94.60%, F1 of 96.82%, SE of 97.49%, and PPV of 98.96%. For the Pregnancy database, we achieved an average ACC of 95.66%, F1 of 97.44%, SE of 98.07%, and PPV of 97.44%. The obtained results show that the fHR related parameters were determined accurately for most of the records, outperforming the other state-of-the-art approaches. The poorer quality of certain signals have caused deviation from the estimated fHR for certain records in the databases. The proposed algorithm is compared with certain well established algorithms, and has proven to be accurate in its fECG extractions. | cs |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartofseries | Scientific Reports | cs |
dc.relation.uri | https://doi.org/10.1038/s41598-022-24733-1 | cs |
dc.rights | Copyright © 2022, The Author(s) | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.title | Nature inspired method for noninvasive fetal ECG extraction | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1038/s41598-022-24733-1 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 12 | cs |
dc.description.issue | 1 | cs |
dc.description.firstpage | art. no. 20159 | cs |
dc.identifier.wos | 000887936300004 |
Soubory tohoto záznamu
Tento záznam se objevuje v následujících kolekcích
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460) [562]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry informatiky (460) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450) [396]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry kybernetiky a biomedicínského inženýrství (450) v časopisech a v Lecture Notes in Computer Science registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.