Zobrazit minimální záznam

dc.contributor.authorJaroš, René
dc.contributor.authorByrtus, Radek
dc.contributor.authorDohnal, Jakub
dc.contributor.authorDanys, Lukáš
dc.contributor.authorBaroš, Jan
dc.contributor.authorKoziorek, Jiří
dc.contributor.authorZmij, Petr
dc.contributor.authorMartinek, Radek
dc.date.accessioned2023-02-09T14:13:39Z
dc.date.available2023-02-09T14:13:39Z
dc.date.issued2022
dc.identifier.citationArchives of Computational Methods in Engineering. 2022.cs
dc.identifier.issn1134-3060
dc.identifier.issn1886-1784
dc.identifier.urihttp://hdl.handle.net/10084/149087
dc.description.abstractCondition monitoring of induction motors (IM) among with the predictive maintenance concept are currently among the most promising research topics of manufacturing industry. Production efficiency is an important parameter of every manufacturing plant since it directly influences the final price of products. This research article presents a comprehensive overview of conditional monitoring techniques, along with classification techniques and advanced signal processing techniques. Compared methods are either based on measurement of electrical quantities or nonelectrical quantities that are processed by advanced signal processing techniques. This article briefly compares individual techniques and summarize results achieved by different research teams. Our own testbed is briefly introduced in the discussion section along with plans for future dataset creation. According to the comparison, Wavelet Transform (WT) along with Empirical Mode Decomposition (EMD), Principal Component Analysis (PCA) and Park's Vector Approach (PVA) provides the most interesting results for real deployment and could be used for future experiments.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesArchives of Computational Methods in Engineeringcs
dc.relation.urihttps://doi.org/10.1007/s11831-022-09834-4cs
dc.rightsCopyright © 2022, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectadvanced signal processing techniquescs
dc.subjectcondition monitoringcs
dc.subjectinduction motorscs
dc.subjectpredictive maintenancecs
dc.subjectvibration measurementcs
dc.titleAdvanced signal processing methods for condition monitoringcs
dc.typearticlecs
dc.identifier.doi10.1007/s11831-022-09834-4
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos000875269200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Copyright © 2022, The Author(s)
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Copyright © 2022, The Author(s)