Zobrazit minimální záznam

dc.contributor.authorKhodadadi, Nima
dc.contributor.authorAbualigah, Laith
dc.contributor.authorEl-Kenawy, El-Sayed M.
dc.contributor.authorSnášel, Václav
dc.contributor.authorMirjalili, Seyedali
dc.date.accessioned2023-03-06T10:02:45Z
dc.date.available2023-03-06T10:02:45Z
dc.date.issued2022
dc.identifier.citationIEEE Access. 2022, vol. 10, p. 106673-106698.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/149175
dc.description.abstractThis research proposes an Archive-based Multi-Objective Arithmetic Optimization Algorithm (MAOA) as an alternative to the recently established Arithmetic Optimization Algorithm (AOA) for multi-objective problems (MAOA). The original AOA approach was based on the distribution behavior of vital mathematical arithmetic operators, such as multiplication, division, subtraction, and addition. The idea of the archive is introduced in MAOA, and it may be used to find non-dominated Pareto optimum solutions. The proposed method is tested on seven benchmark functions, ten CEC-2020 mathematic functions, and eight restricted engineering design challenges to determine its suitability for solving real-world engineering difficulties. The experimental findings are compared to five multi-objective optimization methods (Multi-Objective Particle Swarm Optimization (MOPSO), Multi-Objective Slap Swarm Algorithm (MSSA), Multi-Objective Ant Lion Optimizer (MOALO), Multi-Objective Genetic Algorithm (NSGA2) and Multi-Objective Grey Wolf Optimizer (MOGWO) reported in the literature using multiple performance measures. The empirical results show that the proposed MAOA outperforms existing state-of-the-art multi-objective approaches and has a high convergence rate.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2022.3212081cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectoptimizationcs
dc.subjectarithmeticcs
dc.subjectheuristic algorithmscs
dc.subjectlinear programmingcs
dc.subjectparticle swarm optimizationcs
dc.subjectmetaheuristicscs
dc.subjectsearch problemscs
dc.subjectPareto optimizationcs
dc.subjectarithmetic optimization algorithm (AOA)cs
dc.subjectarchive-based multi-objective arithmetic optimization algorithm (MAOA)cs
dc.subjectmulti-objective problemscs
dc.subjectengineering optimizationcs
dc.titleAn archive-based multi-objective arithmetic optimization algorithm for solving industrial engineering problemscs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2022.3212081
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume10cs
dc.description.lastpage106698cs
dc.description.firstpage106673cs
dc.identifier.wos000866442500001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/