Zobrazit minimální záznam

dc.contributor.authorYin, Chun-Wu
dc.contributor.authorRiaz, Saleem
dc.contributor.authorZaman, Haider
dc.contributor.authorUllah, Nasim
dc.contributor.authorBlažek, Vojtěch
dc.contributor.authorProkop, Lukáš
dc.contributor.authorMišák, Stanislav
dc.date.accessioned2023-05-19T07:09:41Z
dc.date.available2023-05-19T07:09:41Z
dc.date.issued2023
dc.identifier.citationMathematics. 2023, vol. 11, issue 1, art. no. 56.cs
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10084/149292
dc.description.abstractIntelligent robotics has drawn a great deal of attention due to its high precision, stability, and reliability, which are the basic key factors for industrial automation. This paper proposes an iterative learning control (ILC) technique with predefined-time convergence as a solution to an applied engineering problem, namely, that local time cannot be preset when a second-order nonlinear system undertakes control of the accurate tracking of local time under any initial iterative value. A time-varying sliding surface with an initial value of zero was designed, and it was theoretically proven that the trajectory tracking error in the sliding surface could converge to zero within a predefined time. The iterative control problem of trajectory tracking was thus changed to an iterative control problem of time-varying sliding-mode surface tracing with a starting value of zero. A PD-type closed-loop ILC with a time-varying sliding mode surface was designed such that the trajectory tracking error converged and stabilized on the sliding mode surface after a finite number of learning iterations. The control goal for the system's output was the ability to track the desired trajectory accurately within a predefined time interval, and it was achieved by combining this with the predefined time convergence characteristics of the time-varying sliding mode surface. Numerical simulation of trajectory tracking control of a repetitive motion manipulator was used to verify the effectiveness of the proposed controller and its robustness in the face of external disturbances.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMathematicscs
dc.relation.urihttps://doi.org/10.3390/math11010056cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectiterative learning controlcs
dc.subjectsliding mode controlcs
dc.subjectpredefined-time convergencecs
dc.subjecttime-varying sliding mode surfacecs
dc.subjectrobotic armcs
dc.titleA novel predefined time PD-type ILC paradigm for nonlinear systemscs
dc.typearticlecs
dc.identifier.doi10.3390/math11010056
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue1cs
dc.description.firstpageart. no. 56cs
dc.identifier.wos000909569900001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.