Zobrazit minimální záznam

dc.contributor.authorKhan, Muzammil
dc.contributor.authorNaqvi, Salman Raza
dc.contributor.authorUllah, Zahid
dc.contributor.authorTaqvi, Syed Ali Ammar
dc.contributor.authorKhan, Muhammad Nouman Aslam
dc.contributor.authorFarooq, Wasif
dc.contributor.authorMehran, Muhammad Taqi
dc.contributor.authorJuchelková, Dagmar
dc.contributor.authorŠtěpanec, Libor
dc.date.accessioned2023-06-13T11:58:37Z
dc.date.available2023-06-13T11:58:37Z
dc.date.issued2023
dc.identifier.citationFuel. 2023, vol. 332, art. no. 126055.cs
dc.identifier.issn0016-2361
dc.identifier.issn1873-7153
dc.identifier.urihttp://hdl.handle.net/10084/149311
dc.description.abstractThermochemical conversion of biomass has been considered a promising technique to produce alternative renewable fuel sources for future energy supply. However, these processes are often complex, labor-intensive, and time-consuming. Significant efforts have been made in developing strategies for modeling thermochem-ical conversion processes to maximize their performance and productivity. Among these strategies, machine learning (ML) has attracted substantial interest in recent years in thermochemical conversion process optimi-zation, yield prediction, real-time monitoring, and process control. This study presents a comprehensive review of the research and development in state-of-the-art ML applications in pyrolysis, torrefaction, hydrothermal treatment, gasification, and combustion. Artificial neural networks have been widely employed due to their ability to learn extremely non-linear input-output correlations. Furthermore, the hybrid ML models out-performed the traditional ML models in modeling and optimization tasks. The comparison between various ML methods for different applications, and insights about where the current research is heading, is highlighted. Finally, based on the critical analysis, existing research knowledge gaps are identified, and future recommen-dations are presented.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesFuelcs
dc.relation.urihttps://doi.org/10.1016/j.fuel.2022.126055cs
dc.rights© 2022 Elsevier Ltd. All rights reserved.cs
dc.subjectartificial intelligencecs
dc.subjectmachine learningcs
dc.subjectoptimizationcs
dc.subjectbiomasscs
dc.subjectsustainabilitycs
dc.subjectclimate changecs
dc.titleApplications of machine learning in thermochemical conversion of biomass - A reviewcs
dc.typearticlecs
dc.identifier.doi10.1016/j.fuel.2022.126055
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume332cs
dc.description.firstpageart. no. 126055cs
dc.identifier.wos000870315200002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam