dc.contributor.author | Hlinka, Josef | |
dc.contributor.author | Dostálová, Kamila | |
dc.contributor.author | Čabanová, Kristina | |
dc.contributor.author | Madeja, Roman | |
dc.contributor.author | Frydrýšek, Karel | |
dc.contributor.author | Koutecký, Jan | |
dc.contributor.author | Rybková, Zuzana | |
dc.contributor.author | Malachová, Kateřina | |
dc.contributor.author | Umezawa, Osamu | |
dc.date.accessioned | 2023-11-08T07:56:51Z | |
dc.date.available | 2023-11-08T07:56:51Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Materials. 2023, vol. 16, issue 2, art. no. 632. | cs |
dc.identifier.issn | 1996-1944 | |
dc.identifier.uri | http://hdl.handle.net/10084/151479 | |
dc.description.abstract | Anodization coloring of titanium tools or implants is one of the common methods for the
differentiation of each application by its size or type. Commercial purity titanium grade 4 plates
(50 × 20 × 0.1 mm) were tested to obtain their electrochemical and other technological properties.
The coloring process was done using the potential of 15, 30, 45, 60, and 75 Volts for 5 s in 1 wt. %
citric acid in demineralized water solution. Organic acids solutions generally produce better surface
quality compared to inorganic acids. The contact angle of colored surfaces was measured by the
sessile drop method. Electrochemical impedance spectroscopy and potentiodynamic polarization
were used for the determination of selected electrochemical and corrosion parameters of the tested
surfaces. It was found that the anodization process decreases corrosion potential significantly. It was
also confirmed that a higher potential used for anodization results in higher polarization resistance
but also a decrease in corrosion potential. The anodization process at 75 V produces surfaces with the
lowest corrosion rate under 1 nm/year and the noblest corrosion potential. It was confirmed that the
anodization process in citric acid does not affect titanium cytotoxicity. | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartofseries | Materials | cs |
dc.relation.uri | https://doi.org/10.3390/ma16020632 | cs |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | titanium | cs |
dc.subject | anodization | cs |
dc.subject | corrosion properties | cs |
dc.subject | polarization | cs |
dc.subject | biocompatibility | cs |
dc.title | Electrochemical, biological, and technological properties of anodized titanium for color coded implants | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3390/ma16020632 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 16 | cs |
dc.description.issue | 2 | cs |
dc.description.firstpage | art. no. 632 | cs |
dc.identifier.wos | 000918981600001 | |