Zobrazit minimální záznam

dc.contributor.authorAhmad, Waqas
dc.contributor.authorFarooq, Waqas
dc.contributor.authorKhan, Adnan Daud
dc.contributor.authorJan, Shayan Tariq
dc.contributor.authorJasiński, Michał
dc.contributor.authorLeonowicz, Zbigniew
dc.contributor.authorGoňo, Radomír
dc.contributor.authorPetrov, Jan
dc.date.accessioned2023-11-08T09:39:33Z
dc.date.available2023-11-08T09:39:33Z
dc.date.issued2023
dc.identifier.citationProcesses. 2023, vol. 11, issue 1, art. no. 91.cs
dc.identifier.issn2227-9717
dc.identifier.urihttp://hdl.handle.net/10084/151481
dc.description.abstractCarbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells with zinc magnesium oxide (Zn1−xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25) coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers’ band alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping density above 1015 cm−3 can degrade the cell performance. After optimization of the buffer layer thickness and doping density at 40 nm and 1018 cm−3 , the cell displayed its maximum performance. Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF). The recorded results are in good agreement with the standard theoretical studies.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesProcessescs
dc.relation.urihttps://doi.org/10.3390/pr11010091cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectZn1−xMgxOcs
dc.subjectthin-film solar cellscs
dc.subjectSCAPS-1Dcs
dc.titleThin-film carbon nitride (C2N)-based solar cell optimization considering Zn1−xMgxO as a buffer layercs
dc.typearticlecs
dc.identifier.doi10.3390/pr11010091
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue1cs
dc.description.firstpageart. no. 91cs
dc.identifier.wos000918971200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.