Zobrazit minimální záznam

dc.contributor.authorMaděra, Martin
dc.contributor.authorMarček, Dušan
dc.date.accessioned2023-11-15T12:58:54Z
dc.date.available2023-11-15T12:58:54Z
dc.date.issued2023
dc.identifier.citationMathematics. 2023, vol. 11, issue 2, art. no. 454.cs
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10084/151739
dc.description.abstractForecasting exchange rates is a complex problem that has benefitted from recent advances and research in machine learning. The main goal of this study is to design and implement a method to improve the learning performance of artificial neural networks with large volumes of data using population-based metaheuristics. The micro-genetic training algorithm is thoroughly analyzed using profiling tools to find bottlenecks. We compare the use of a micro-genetic algorithm to predict changes in currency exchange rates on a data set containing more than 500,000 values. To find the best parameters of neural networks, we propose an improved micro-genetic training algorithm by dividing the training data into mini batches. In this case, the improved micro-genetic algorithm proved to be much faster compared to the standard genetic algorithm, while achieving the same prediction accuracy. This allows for the use of this algorithm for just-in-time predictions of high frequency data. Here, neural network models are first created and validated on an existing data set. Then, the new data values can be added to neural network models and retrained in a short time.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMathematicscs
dc.relation.urihttps://doi.org/10.3390/math11020454cs
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectARMA modelscs
dc.subjecthigh frequency datacs
dc.subjectstatistical time series analysiscs
dc.subjectneural networkscs
dc.subjectgenetic and micro-genetic algorithmcs
dc.titleIntelligence in finance and economics for predicting high-frequency datacs
dc.typearticlecs
dc.identifier.doi10.3390/math11020454
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue2cs
dc.description.firstpageart. no. 454cs
dc.identifier.wos000927070300001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.