Show simple item record

dc.contributor.authorKubíček, Jan
dc.contributor.authorVaryšová, Alice
dc.contributor.authorČerný, Martin
dc.contributor.authorŠkandera, Jiří
dc.contributor.authorOczka, David
dc.contributor.authorAugustynek, Martin
dc.contributor.authorPenhaker, Marek
dc.date.accessioned2023-12-04T13:44:34Z
dc.date.available2023-12-04T13:44:34Z
dc.date.issued2023
dc.identifier.citationMathematics. 2023, vol. 11, issue 4, art. no. 1027.cs
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10084/151789
dc.description.abstractMedical image segmentation plays an indispensable role in the identification of articular cartilage, tibial and femoral bones from magnetic resonance imaging (MRI). There are various image segmentation strategies that can be used to identify the knee structures of interest. Among the most popular are the methods based on non-hierarchical clustering, including the algorithms K-means and fuzzy C-means (FCM). Although these algorithms have been used in many studies for regional image segmentation, they have two essential drawbacks that limit their performance and accuracy of segmentation. Firstly, they rely on a precise selection of initial centroids, which is usually conducted randomly, and secondly, these algorithms are sensitive enough to image noise and artifacts, which may deteriorate the segmentation performance. Based on such limitations, we propose, in this study, two novel alternative metaheuristic hybrid schemes: non-hierarchical clustering, driven by a genetic algorithm, and Particle Swarm Optimization (PSO) with fitness function, which utilizes Kapur’s entropy and statistical variance. The goal of these optimization elements is to find the optimal distribution of centroids for the knee MR image segmentation model. As a part of this study, we provide comprehensive testing of the robustness of these novel segmentation algorithms upon the image noise generators. This includes Gaussian, Speckle, and impulsive Salt and Pepper noise with dynamic noise to objectively report the robustness of the proposed segmentation strategies in contrast with conventional K-means and FCM. This study reveals practical applications of the proposed algorithms for articular cartilage extraction and the consequent classification performance of early osteoarthritis based on segmentation models and convolutional neural networks (CNN). Here, we provide a comparative analysis of GoogLeNet and ResNet 18 with various hyperparameter settings, where we achieved 99.92% accuracy for the best classification configuration for early cartilage loss recognition.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMathematicscs
dc.relation.urihttps://doi.org/10.3390/math11041027cs
dc.rights© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmedical image segmentationcs
dc.subjectarticular cartilagecs
dc.subjectnon-hierarchical clusteringcs
dc.subjectK-meanscs
dc.subjectgenetic algorithmscs
dc.subjectPSOcs
dc.subjectFCMcs
dc.titleNovel hybrid optimized clustering schemes with genetic algorithm and PSO for segmentation and classification of articular cartilage loss from MR imagescs
dc.typearticlecs
dc.identifier.doi10.3390/math11041027
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue4cs
dc.description.firstpageart. no. 1027cs
dc.identifier.wos000941588500001


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.
Except where otherwise noted, this item's license is described as © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution.