Path segmentation from point cloud data for autonomous navigation
dc.contributor.author | Rajathi, Krishnamoorthi | |
dc.contributor.author | Gomathi, Nandhagopal | |
dc.contributor.author | Mahdal, Miroslav | |
dc.contributor.author | Guráš, Radek | |
dc.date.accessioned | 2023-12-19T13:18:33Z | |
dc.date.available | 2023-12-19T13:18:33Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Applied Sciences. 2023, vol. 13, issue 6, art. no. 3977. | cs |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | http://hdl.handle.net/10084/151853 | |
dc.description.abstract | Autonomous vehicles require in-depth knowledge of their surroundings, making path segmentation and object detection crucial for determining the feasible region for path planning. Uniform characteristics of a road portion can be denoted by segmentations. Currently, road segmen tation techniques mostly depend on the quality of camera images under different lighting conditions. However, Light Detection and Ranging (LiDAR) sensors can provide extremely precise 3D geometry information about the surroundings, leading to increased accuracy with increased memory consump tion and computational overhead. This paper introduces a novel methodology which combines LiDAR and camera data for road detection, bridging the gap between 3D LiDAR Point Clouds (PCs). The assignment of semantic labels to 3D points is essential in various fields, including remote sensing, autonomous vehicles, and computer vision. This research discusses how to select the most relevant geometric features for path planning and improve autonomous navigation. An automatic framework for Semantic Segmentation (SS) is introduced, consisting of four processes: selecting neighborhoods, extracting classification features, and selecting features. The aim is to make the various components usable for end users without specialized knowledge by considering simplicity, effectiveness, and reproducibility. Through an extensive evaluation of different neighborhoods, geometric features, feature selection methods, classifiers, and benchmark datasets, the outcomes show that selecting the appropriate neighborhoods significantly develops 3D path segmentation. Additionally, selecting the right feature subsets can reduce computation time, memory usage, and enhance the quality of the results. | cs |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartofseries | Applied Sciences | cs |
dc.relation.uri | https://doi.org/10.3390/app13063977 | cs |
dc.rights | © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution. | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | autonomous vehicles | cs |
dc.subject | path segmentation | cs |
dc.subject | LiDAR sensors | cs |
dc.subject | 3D geometry information | cs |
dc.subject | semantic labels | cs |
dc.subject | feature selection | cs |
dc.subject | quality of results | cs |
dc.title | Path segmentation from point cloud data for autonomous navigation | cs |
dc.type | article | cs |
dc.identifier.doi | 10.3390/app13063977 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 13 | cs |
dc.description.issue | 6 | cs |
dc.description.firstpage | art. no. 3977 | cs |
dc.identifier.wos | 000953822200001 |
Files in this item
This item appears in the following Collection(s)
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor. -
OpenAIRE [5085]
Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe). -
Publikační činnost Katedry automatizační techniky a řízení / Publications of Department of Control Systems and Instrumentation (352) [94]
Kolekce obsahuje bibliografické záznamy publikační činnosti (článků) akademických pracovníků Katedry automatizační techniky a řízení (352) v časopisech registrovaných ve Web of Science od roku 2003 po současnost. -
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost.