Zobrazit minimální záznam

dc.contributor.authorZdražil, Lukáš
dc.contributor.authorBaďura, Zdeněk
dc.contributor.authorLanger, Michal
dc.contributor.authorKalytchuk, Sergii
dc.contributor.authorPanáček, David
dc.contributor.authorScheibe, Magdalena
dc.contributor.authorKment, Štěpán
dc.contributor.authorKmentová, Hana
dc.contributor.authorThottappali, Muhammed Arshad
dc.contributor.authorMohammadi, Elmira
dc.contributor.authorMedveď, Miroslav
dc.contributor.authorBakandritsos, Aristides
dc.contributor.authorZoppellaro, Giorgio
dc.contributor.authorZbořil, Radek
dc.contributor.authorOtyepka, Michal
dc.date.accessioned2024-01-12T11:34:42Z
dc.date.available2024-01-12T11:34:42Z
dc.date.issued2023
dc.identifier.citationSmall. 2023, vol. 19, issue 32, art. no. 2206587.cs
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttp://hdl.handle.net/10084/151891
dc.description.abstractPhotoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e−/h+) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e−/h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoreti cally by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model sys tems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduc tion of hydrogen peroxide (H2O2) from water and water/2-propanol mixture via a water oxidation reaction.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesSmallcs
dc.relation.urihttps://doi.org/10.1002/smll.202206587cs
dc.rights© 2023 The Authors. Small published by Wiley-VCH GmbHcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcarbon dotscs
dc.subjectdensity functional theorycs
dc.subjecthigh spin speciescs
dc.subjecthydrogen peroxidecs
dc.subjectphotoluminescencecs
dc.subjectpolaronscs
dc.subjectwater oxidationcs
dc.titleMagnetic polaron states in photoluminescent carbon dots enable hydrogen peroxide photoproductioncs
dc.typearticlecs
dc.identifier.doi10.1002/smll.202206587
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume19cs
dc.description.issue32cs
dc.description.firstpageart. no. 2206587cs
dc.identifier.wos000966641500001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Small published by Wiley-VCH GmbH
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Small published by Wiley-VCH GmbH