Zobrazit minimální záznam

dc.contributor.authorLakhan, Abdullah
dc.contributor.authorMohammed, Mazin Abed
dc.contributor.authorNedoma, Jan
dc.contributor.authorMartinek, Radek
dc.contributor.authorTiwari, Prayag
dc.contributor.authorVidyarthi, Ankit
dc.contributor.authorAlkhayyat, Ahmed
dc.contributor.authorWang, Weiyu
dc.date.accessioned2024-01-23T11:05:01Z
dc.date.available2024-01-23T11:05:01Z
dc.date.issued2023
dc.identifier.citationIEEE Journal of Biomedical and Health Informatics. 2023, vol. 27, issue 2, p. 664-672.cs
dc.identifier.issn2168-2194
dc.identifier.issn2168-2208
dc.identifier.urihttp://hdl.handle.net/10084/151945
dc.description.abstractThese days, the usage of machine-learning-enabled dynamic Internet of Medical Things (IoMT) systems with multiple technologies for digital healthcare applications has been growing progressively in practice. Machine learning plays a vital role in the IoMT system to balance the load between delay and energy. However, the traditional learning models fraud on the data in the distributed IoMT system for healthcare applications are still a critical research problem in practice. The study devises a federated learning-based blockchain-enabled task scheduling (FL-BETS) framework with different dynamic heuristics. The study considers the different healthcare applications that have both hard constraint (e.g., deadline) and resource energy consumption (e.g., soft constraint) during execution on the distributed fog and cloud nodes. The goal of FL-BETS is to identify and ensure the privacy preservation and fraud of data at various levels, such as local fog nodes and remote clouds, with minimum energy consumption and delay, and to satisfy the deadlines of healthcare workloads. The study introduces the mathematical model. In the performance evaluation, FL-BETS outperforms all existing machine learning and blockchain mechanisms in fraud analysis, data validation, energy and delay constraints for healthcare applications.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Journal of Biomedical and Health Informaticscs
dc.relation.urihttps://doi.org/10.1109/JBHI.2022.3165945cs
dc.rightsCopyright © 2023, IEEEcs
dc.subjectblockchaincs
dc.subjectcloudcs
dc.subjectfederated learningcs
dc.subjectfraud-analysiscs
dc.subjectfogcs
dc.subjecthealthcarecs
dc.subjectIoMTcs
dc.subjectprivacy preservationcs
dc.titleFederated-learning based privacy preservation and fraud-enabled blockchain IoMT system for healthcarecs
dc.typearticlecs
dc.identifier.doi10.1109/JBHI.2022.3165945
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume27cs
dc.description.issue2cs
dc.description.lastpage672cs
dc.description.firstpage664cs
dc.identifier.wos000967038100001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam