Zobrazit minimální záznam

dc.contributor.authorTopolánek, David
dc.contributor.authorKrčál, Vít
dc.contributor.authorFoltyn, Ladislav
dc.contributor.authorPraks, Pavel
dc.contributor.authorVysocký, Jan
dc.contributor.authorPraksová, Renáta
dc.contributor.authorPrettico, Giuseppe
dc.contributor.authorFulli, Gianluca
dc.date.accessioned2024-02-06T09:37:22Z
dc.date.available2024-02-06T09:37:22Z
dc.date.issued2023
dc.identifier.citationInternational Journal of Electrical Power & Energy Systems. 2023, vol. 152, art. no. 109203.cs
dc.identifier.issn0142-0615
dc.identifier.issn1879-3517
dc.identifier.urihttp://hdl.handle.net/10084/151998
dc.description.abstractThis paper focuses on the analysis of suitable optimization methods applied to large meshed low-voltage networks. The introduced methods aim to minimize the SC-current contribution by simultaneously fulfilling well-defined operational constraints. The high number of binary variables (134) used in the worst case to determine the possible network configurations generates 1040 possible solutions. For this reason, the paper focuses only on methods capable of reducing the necessary steady-state calculations to a tractable size. Depending on the case under study, the deterministic method turns to be faster than the other ones at the price of reaching only a local minimum. In contrast, if a longer computation time is tolerated, then evolutionary algorithms succeed in finding the global optimum.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesInternational Journal of Electrical Power & Energy Systemscs
dc.relation.urihttps://doi.org/10.1016/j.ijepes.2023.109203cs
dc.rights© 2023 Elsevier Ltd.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectmeshed networkcs
dc.subjectoptimizationcs
dc.subjectshort circuitcs
dc.subjectreconfigurationcs
dc.subjectdistribution networkcs
dc.subjectevolutionary algorithmcs
dc.titleOptimization method for short circuit current reduction in extensive meshed LV networkcs
dc.typearticlecs
dc.identifier.doi10.1016/j.ijepes.2023.109203
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume152cs
dc.description.firstpageart. no. 109203cs
dc.identifier.wos001001195200001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 Elsevier Ltd.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 Elsevier Ltd.