Zobrazit minimální záznam

dc.contributor.authorBasu, Arkaprabha
dc.contributor.authorPaul, Sandip
dc.contributor.authorGhosh, Sreeya
dc.contributor.authorDas, Swagatam
dc.contributor.authorChanda, Bhabatosh
dc.contributor.authorBhagvati, Chakravarthy
dc.contributor.authorSnášel, Václav
dc.date.accessioned2024-02-08T11:35:02Z
dc.date.available2024-02-08T11:35:02Z
dc.date.issued2023
dc.identifier.citationIEEE Access. 2023, vol. 11, p. 53939-53977.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/152014
dc.description.abstractDigitized methodologies in the recent era contribute to various fields of automation that used to hold different interests and meanings of human life. Buildings with historical significance, cultural values, and beliefs are becoming an interdisciplinary field of interest, engaging more computer scientists nowadays. Such structures need more attention towards reconstructing their values using a flavor of computerized tools instead of brickwork directly. Due to the wear of time, the tiles and engravings of most of the historical monuments are on the verge of ruin, endangering significant historical values. In this survey, we rebuild the values by delving deep into the device and methodologies by providing a comprehensive understanding of emerging fields and some experimental decisions. We discuss heritage restoration from some essential papers on 3D reconstruction, image inpainting, IoT-based methods, genetic algorithms, and image processing. The survey explains Machine Learning, Deep Learning, and Computer Vision-based methods for various restoration tasks in the related field. We divide this into certain parts contributing to different fields that restore cultural heritage. Moreover, we infer that the techniques will be faster, cheaper, and more beneficial to the context of image reconstruction in the near future.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2023.3280639cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectcultural heritagecs
dc.subject3D reconstructioncs
dc.subjectclassificationcs
dc.subjectgenerative adversarial networkcs
dc.subjectbuilding information modelingcs
dc.subjectinpaintingcs
dc.titleDigital restoration of cultural heritage with data-driven computing: A surveycs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2023.3280639
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.lastpage53977cs
dc.description.firstpage53939cs
dc.identifier.wos001005659000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by-nc-nd/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by-nc-nd/4.0/