Zobrazit minimální záznam

dc.contributor.authorRajalakshmi, Radhakrishnan
dc.contributor.authorPothiraj, Sivakumar
dc.contributor.authorMahdal, Miroslav
dc.contributor.authorElangovan, Muniyandy
dc.date.accessioned2024-02-13T05:56:59Z
dc.date.available2024-02-13T05:56:59Z
dc.date.issued2023
dc.identifier.citationSensors. 2023, vol. 23, issue 12, art. no. 5418.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/152169
dc.description.abstractUnderwater visible light communication (UVLC) has recently come to light as a viable wireless carrier for signal transmission in risky, uncharted, and delicate aquatic environments like seas. Despite the potential of UVLC as a green, clean, and safe alternative to conventional communi cation methods, it is challenged by significant signal attenuation and turbulent channel conditions compared to long-distance terrestrial communication. To address linear and nonlinear impairments in UVLC systems, this paper presents an adaptive fuzzy logic deep-learning equalizer (AFL-DLE) for 64 Quadrature Amplitude Modulation-Component minimal Amplitude Phase shift (QAM-CAP)- modulated UVLC systems. The proposed AFL-DLE is dependent on complex-valued neural net works and constellation partitioning schemes and utilizes the Enhanced Chaotic Sparrow Search Optimization Algorithm (ECSSOA) to improve overall system performance. Experimental outcomes demonstrate that the suggested equalizer achieves significant reductions in bit error rate (55%), dis tortion rate (45%), computational complexity (48%), and computation cost (75%) while maintaining a high transmission rate (99%). This approach enables the development of high-speed UVLC systems capable of processing data online, thereby advancing state-of-the-art underwater communication.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s23125418cs
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectunderwater visible light communicationcs
dc.subjectdeep learningcs
dc.subjectequalizationcs
dc.subjectadaptive fuzzy logiccs
dc.subjectdeep-learning equalizercs
dc.subjectsparrow search optimizationcs
dc.titleAdaptive fuzzy logic deep-learning equalizer for mitigating linear and nonlinear distortions in underwater visible light communication systemscs
dc.typearticlecs
dc.identifier.doi10.3390/s23125418
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue12cs
dc.description.firstpageart. no. 5418cs
dc.identifier.wos001015716900001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.