Zobrazit minimální záznam

dc.contributor.authorDey, Alokananda
dc.contributor.authorBhattacharyya, Siddhartha
dc.contributor.authorDey, Sandip
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2024-02-14T06:12:00Z
dc.date.available2024-02-14T06:12:00Z
dc.date.issued2023
dc.identifier.citationMultimedia Tools and Applications. 2023.cs
dc.identifier.issn1380-7501
dc.identifier.issn1573-7721
dc.identifier.urihttp://hdl.handle.net/10084/152177
dc.description.abstractIn recent years, Quantum Inspired Metaheuristic algorithms have emerged to be promising due to their efficiency, robustness and faster computational capability. In this paper, a novel Quantum Inspired Differential Evolution (QIDE) algorithm has been presented for automatic clustering of unlabeled datasets. In case of automatic clustering, the datasets have been clustered into optimal number of groups on the run without any apriori knowledge of the datasets. In this work, the proposed algorithm has been compared with other two quantum inspired algorithms, viz., Fast Quantum Inspired Evolutionary Clustering Algorithm (FQEA) and Quantum Evolutionary Algorithm for Data Clustering (QEAC), a Classical Differential Evolution (CDE) algorithm with different mutation probabilities and an Improved Differential Evolution (IDE) algorithm. The experiments have been conducted on six real life publicly available datasets to identify the optimal number of clusters. By introducing some concepts of quantum gates, the proposed algorithm not only achieves good convergence speed but also provides better results than other competitive algorithms. In addition, Sobol’s sensitivity analysis has been conducted for tuning the parameters of the proposed algorithm.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesMultimedia Tools and Applicationscs
dc.relation.urihttps://doi.org/10.1007/s11042-023-15704-3cs
dc.rightsCopyright © 2023, The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Naturecs
dc.subjectautomatic clusteringcs
dc.subjectCS indexcs
dc.subjectdifferential evolutioncs
dc.subjectquantum computingcs
dc.subjectSobol’s sensitivity analysiscs
dc.titleA quantum inspired differential evolution algorithm for automatic clustering of real life datasetscs
dc.typearticlecs
dc.identifier.doi10.1007/s11042-023-15704-3
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.identifier.wos001010496600003


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam