Zobrazit minimální záznam

dc.contributor.authorHenrotte, Olivier
dc.contributor.authorSantiago, Eva Yazmin
dc.contributor.authorMovsesyan, Artur
dc.contributor.authorMascaretti, Luca
dc.contributor.authorAfshar, Morteza
dc.contributor.authorMinguzzi, Alessandro
dc.contributor.authorVertova, Alberto
dc.contributor.authorWang, Zhiming M.
dc.contributor.authorZbořil, Radek
dc.contributor.authorKment, Štěpán
dc.contributor.authorGovorov, Alexander O.
dc.contributor.authorNaldoni, Alberto
dc.date.accessioned2024-02-14T10:31:58Z
dc.date.available2024-02-14T10:31:58Z
dc.date.issued2023
dc.identifier.citationACS Nano. 2023, vol. 17, issue 12, p. 11427-11438.cs
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/10084/152183
dc.description.abstractNanoscale investigation of the reactivity of photocatalytic systems is crucial for their fundamental understanding and improving their design and applicability. Here, we present a photochemical nanoscopy technique that unlocks the local spatial detection of molecular products during plasmonic hot-carrier-driven photocatalytic reactions with nanometric precision. By applying the methodology to Au/TiO2 plasmonic photocatalysts, we experimentally and theoretically determined that smaller and denser Au nanoparticle arrays present lower optical contribution with quantum efficiency in hot-hole-driven photocatalysis closely related to the population heterogeneity. As expected, the highest quantum yield from a redox probe oxidation is achieved at the plasmon peak. Investigating a single plasmonic nanodiode, we unravel the areas where oxidation and reduction products are evolved with subwavelength resolution (∼200 nm), illustrating the bipolar behavior of such nanosystems. These results open the way to quantitative investigations at the nanoscale to evaluate the photocatalytic reactivity of low-dimensional materials in a variety of chemical reactions.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Nanocs
dc.relation.urihttps://doi.org/10.1021/acsnano.3c01009cs
dc.rightsCopyright © 2023, American Chemical Societycs
dc.subjectphotocatalysiscs
dc.subjectplasmonicscs
dc.subjectscanning electrochemical microscopycs
dc.subjectin situ nanoscopycs
dc.subjecthot charge carrierscs
dc.titleLocal photochemical nanoscopy of hot-carrier-driven catalytic reactions using plasmonic nanosystemscs
dc.typearticlecs
dc.identifier.doi10.1021/acsnano.3c01009
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume17cs
dc.description.issue12cs
dc.description.lastpage11438cs
dc.description.firstpage11427cs
dc.identifier.wos001008485100001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam