Zobrazit minimální záznam

dc.contributor.authorZeng, Kai
dc.contributor.authorLi, Yibing
dc.contributor.authorTian, Meng
dc.contributor.authorWei, Chaohui
dc.contributor.authorYan, Jin
dc.contributor.authorRümmeli, Mark H.
dc.contributor.authorStrasser, Peter
dc.contributor.authorYang, Ruizhi
dc.date.accessioned2024-02-19T05:43:45Z
dc.date.available2024-02-19T05:43:45Z
dc.date.issued2023
dc.identifier.citationEnergy Storage Materials. 2023, vol. 60, art. no. 102806.cs
dc.identifier.issn2405-8297
dc.identifier.issn2405-8289
dc.identifier.urihttp://hdl.handle.net/10084/152199
dc.description.abstractCrystalline and amorphous structure can entitle a catalyst with high stability and activity, respectively. Oxygen evolution reaction (OER) catalysts, which widely used in water electrolysis and rechargeable Zn-air batteries, often undergo a surface phase reconstruction process and generate amorphous active phases under applied anodic potential. Although widely known, few studies and strategies have been reported to rationally tune OER pre-catalysts for enhanced reaction kinetics. Herein, we report a trimetallic oxides (a/c-NiFeMoOx) OER per-catalyst with rationally tunable amorphous/crystalline heterostructure degrees by a precise-tuning component strategy. The best a/c-NiFeMoOx electrode exhibits an OER overpotential merely of 256 mV and a small cell-voltage of 1.52 V to reach 10 mA cm–2 for water electrolysis, respectively. It is find that Mo leaching with tailored amorphous/crystalline heterostructure via the rational tuned degree of amorphousness promotes a rapid surface reconstruction of the a/c-NiFeMoOx pre-catalyst to form (oxy)hydroxide active species, whilst operando Raman, ex-situ X-ray photoelectron spectroscopy and density functional theory (DFT) analysis show the ample oxygen vacancies generated by phase transition significantly accelerates the deprotonation of OH* and lower the O* ➝ OOH* free energy for a fast oxygen evolution kinetics. Additionally, the practical application of a/c-NiFeMoOx cathode in rechargeable Zn-air battery delivers a robust long-term cycling (over 840 cycles).cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEnergy Storage Materialscs
dc.relation.urihttps://doi.org/10.1016/j.ensm.2023.102806cs
dc.rights© 2023 Elsevier B.V. All rights reserved.cs
dc.subjectmulti-metal oxidescs
dc.subjectamorphous/crystalline heterostructurecs
dc.subjectsurface reconstructioncs
dc.subjectwater electrolysiscs
dc.subjectZn-air batteriescs
dc.titleMolybdenum-leaching induced rapid surface reconstruction of amorphous/crystalline heterostructured trimetal oxides pre-catalyst for efficient water splitting and Zn-air batteriescs
dc.typearticlecs
dc.identifier.doi10.1016/j.ensm.2023.102806
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume60cs
dc.description.firstpageart. no. 102806cs
dc.identifier.wos001007260000001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam