Zobrazit minimální záznam

dc.contributor.authorZhang, Yu
dc.contributor.authorMascaretti, Luca
dc.contributor.authorMelchionna, Michele
dc.contributor.authorHenrotte, Olivier
dc.contributor.authorKment, Štěpán
dc.contributor.authorFornasiero, Paolo
dc.contributor.authorNaldoni, Alberto
dc.date.accessioned2024-02-20T09:25:00Z
dc.date.available2024-02-20T09:25:00Z
dc.date.issued2023
dc.identifier.citationACS Catalysis. 2023, vol. 13, issue 15, p. 10205-10216.cs
dc.identifier.issn2155-5435
dc.identifier.urihttp://hdl.handle.net/10084/152215
dc.description.abstractLarge-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H2O2 selectivity of 90%, and achieve a H2O2 productivity of 207 mmol gTiN–1 h–1 at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiOxNy surface content promoted a higher H2O2 selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Catalysiscs
dc.relation.urihttps://doi.org/10.1021/acscatal.3c01837cs
dc.rights© 2023 The Authors. Published by American Chemical Societycs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectthermoplasmonicscs
dc.subjectoxygen reduction reactioncs
dc.subjectplasmonicscs
dc.subjecttitanium nitridecs
dc.subjectnanohybridscs
dc.subjectelectrocatalysiscs
dc.titleThermoplasmonic in situ fabrication of nanohybrid electrocatalysts over gas diffusion electrodes for enhanced H2O2 electrosynthesiscs
dc.typearticlecs
dc.identifier.doi10.1021/acscatal.3c01837
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.issue15cs
dc.description.lastpage10216cs
dc.description.firstpage10205cs
dc.identifier.wos001033085000001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Published by American Chemical Society
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Published by American Chemical Society