Zobrazit minimální záznam

dc.contributor.authorPokorný, Tomáš
dc.contributor.authorVykoukal, Vít
dc.contributor.authorMacháč, Petr
dc.contributor.authorMoravec, Zdeněk
dc.contributor.authorScotti, Nicola
dc.contributor.authorRoupcová, Pavla
dc.contributor.authorKarásková, Kateřina
dc.contributor.authorStýskalík, Aleš
dc.date.accessioned2024-02-20T10:05:58Z
dc.date.available2024-02-20T10:05:58Z
dc.date.issued2023
dc.identifier.citationACS Sustainable Chemistry & Engineering. 2023, vol. 11, issue 30, p. 10980-10992.cs
dc.identifier.issn2168-0485
dc.identifier.urihttp://hdl.handle.net/10084/152216
dc.description.abstractNon-oxidative ethanol dehydrogenation is a renewable source of acetaldehyde and hydrogen. The reaction is often catalyzed by supported copper catalysts with high selectivity. The activity and long-term stability depend on many factors, including particle size, choice of support, doping, etc. Herein, we present four different synthetic pathways to prepare Cu/SiO2 catalysts (∼2.5 wt % Cu) with varying copper distribution: hydrolytic sol–gel (sub-nanometer clusters), dry impregnation (A̅ = 3.4 nm; σ = 0.9 nm and particles up to 32 nm), strong electrostatic adsorption (A̅ = 3.1 nm; σ = 0.6 nm), and solvothermal hot injection followed by Cu particle deposition (A̅ = 4.0 nm; σ = 0.8 nm). All materials were characterized by ICP-OES, XPS, N2 physisorption, STEM-EDS, XRD, RFC N2O, and H2-TPR and tested in ethanol dehydrogenation from 185 to 325 °C. The sample prepared by hydrolytic sol–gel exhibited high Cu dispersion and, accordingly, the highest catalytic activity. Its acetaldehyde productivity (2.79 g g–1 h–1 at 255 °C) outperforms most of the Cu-based catalysts reported in the literature, but it lacks stability and tends to deactivate over time. On the other hand, the sample prepared by simple and cost-effective dry impregnation, despite having Cu particles of various sizes, was still highly active (2.42 g g–1 h–1 acetaldehyde at 255 °C). Importantly, it was the most stable sample out of the studied materials. The characterization of the spent catalyst confirmed its exceptional properties: it showed the lowest extent of both coking and particle sintering.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Sustainable Chemistry & Engineeringcs
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.2c06777cs
dc.rights© 2023 The Authors. Published by American Chemical Societycs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectethanol dehydrogenationcs
dc.subjectcoppercs
dc.subjectnanoparticlescs
dc.subjectacetaldehydecs
dc.subjectsol−gelcs
dc.subjectdry impregnationcs
dc.titleEthanol dehydrogenation over copper-silica catalysts: From sub-nanometer clusters to 15 nm large particlescs
dc.typearticlecs
dc.identifier.doi10.1021/acssuschemeng.2c06777
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue30cs
dc.description.lastpage10992cs
dc.description.firstpage10980cs
dc.identifier.wos001033052800001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Published by American Chemical Society
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Published by American Chemical Society