dc.contributor.author | Maška, Martin | |
dc.contributor.author | Ulman, Vladimír | |
dc.contributor.author | Delgado-Rodriguez, Pablo | |
dc.contributor.author | Gómez-de-Mariscal, Estibaliz | |
dc.contributor.author | Nečasová, Tereza | |
dc.contributor.author | Peña, Fidel A. Guerrero | |
dc.contributor.author | Ren, Tsang Ing | |
dc.contributor.author | Meyerowitz, Elliot M. | |
dc.contributor.author | Scherr, Tim | |
dc.contributor.author | Löffler, Katharina | |
dc.contributor.author | Mikut, Ralf | |
dc.contributor.author | Guo, Tianqi | |
dc.contributor.author | Wang, Yin | |
dc.contributor.author | Allebach, Jan P. | |
dc.contributor.author | Bao, Rina | |
dc.contributor.author | Al-Shakarji, Noor M. | |
dc.contributor.author | Rahmon, Gani | |
dc.contributor.author | Toubal, Imad Eddine | |
dc.contributor.author | Palaniappan, Kannappan | |
dc.contributor.author | Lux, Filip | |
dc.contributor.author | Matula, Petr | |
dc.contributor.author | Sugawara, Ko | |
dc.contributor.author | Magnusson, Klas E. G. | |
dc.contributor.author | Aho, Layton | |
dc.contributor.author | Cohen, Andrew R. | |
dc.contributor.author | Arbelle, Assaf | |
dc.contributor.author | Ben-Haim, Tal | |
dc.contributor.author | Raviv, Tammy Riklin | |
dc.contributor.author | Isensee, Fabian | |
dc.contributor.author | Jäger, Paul F. | |
dc.contributor.author | Maier-Hein, Klaus H. | |
dc.contributor.author | Zhu, Yanming | |
dc.contributor.author | Ederra, Cristina | |
dc.contributor.author | Urbiola, Ainhoa | |
dc.contributor.author | Meijering, Erik | |
dc.contributor.author | Cunha, Alexandre | |
dc.contributor.author | Muñoz-Barrutia, Arrate | |
dc.contributor.author | Kozubek, Michal | |
dc.contributor.author | Ortiz-de-Solórzano, Carlos | |
dc.date.accessioned | 2024-02-21T08:26:36Z | |
dc.date.available | 2024-02-21T08:26:36Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Nature Methods. 2023, vol. 20, issue 7, p. 1010-+. | cs |
dc.identifier.issn | 1548-7091 | |
dc.identifier.issn | 1548-7105 | |
dc.identifier.uri | http://hdl.handle.net/10084/152222 | |
dc.description.abstract | The Cell Tracking Challenge is an ongoing benchmarking initiative that
has become a reference in cell segmentation and tracking algorithm
development. Here, we present a signifcant number of improvements
introduced in the challenge since our 2017 report. These include the
creation of a new segmentation-only benchmark, the enrichment of
the dataset repository with new datasets that increase its diversity and
complexity, and the creation of a silver standard reference corpus based
on the most competitive results, which will be of particular interest for
data-hungry deep learning-based strategies. Furthermore, we present
the up-to-date cell segmentation and tracking leaderboards, an in-depth
analysis of the relationship between the performance of the state-of-the-art
methods and the properties of the datasets and annotations, and two
novel, insightful studies about the generalizability and the reusability
of top-performing methods. These studies provide critical practical
conclusions for both developers and users of traditional and machine
learning-based cell segmentation and tracking algorithms. | cs |
dc.language.iso | en | cs |
dc.publisher | Springer Nature | cs |
dc.relation.ispartofseries | Nature Methods | cs |
dc.relation.uri | https://doi.org/10.1038/s41592-023-01879-y | cs |
dc.rights | Copyright © 2023, The Author(s) | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.title | The Cell Tracking Challenge: 10 years of objective benchmarking | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1038/s41592-023-01879-y | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 20 | cs |
dc.description.issue | 7 | cs |
dc.description.lastpage | 1020 | cs |
dc.description.firstpage | 1010 | cs |
dc.identifier.wos | 000999144000001 | |