Show simple item record

dc.contributor.authorMaška, Martin
dc.contributor.authorUlman, Vladimír
dc.contributor.authorDelgado-Rodriguez, Pablo
dc.contributor.authorGómez-de-Mariscal, Estibaliz
dc.contributor.authorNečasová, Tereza
dc.contributor.authorPeña, Fidel A. Guerrero
dc.contributor.authorRen, Tsang Ing
dc.contributor.authorMeyerowitz, Elliot M.
dc.contributor.authorScherr, Tim
dc.contributor.authorLöffler, Katharina
dc.contributor.authorMikut, Ralf
dc.contributor.authorGuo, Tianqi
dc.contributor.authorWang, Yin
dc.contributor.authorAllebach, Jan P.
dc.contributor.authorBao, Rina
dc.contributor.authorAl-Shakarji, Noor M.
dc.contributor.authorRahmon, Gani
dc.contributor.authorToubal, Imad Eddine
dc.contributor.authorPalaniappan, Kannappan
dc.contributor.authorLux, Filip
dc.contributor.authorMatula, Petr
dc.contributor.authorSugawara, Ko
dc.contributor.authorMagnusson, Klas E. G.
dc.contributor.authorAho, Layton
dc.contributor.authorCohen, Andrew R.
dc.contributor.authorArbelle, Assaf
dc.contributor.authorBen-Haim, Tal
dc.contributor.authorRaviv, Tammy Riklin
dc.contributor.authorIsensee, Fabian
dc.contributor.authorJäger, Paul F.
dc.contributor.authorMaier-Hein, Klaus H.
dc.contributor.authorZhu, Yanming
dc.contributor.authorEderra, Cristina
dc.contributor.authorUrbiola, Ainhoa
dc.contributor.authorMeijering, Erik
dc.contributor.authorCunha, Alexandre
dc.contributor.authorMuñoz-Barrutia, Arrate
dc.contributor.authorKozubek, Michal
dc.contributor.authorOrtiz-de-Solórzano, Carlos
dc.date.accessioned2024-02-21T08:26:36Z
dc.date.available2024-02-21T08:26:36Z
dc.date.issued2023
dc.identifier.citationNature Methods. 2023, vol. 20, issue 7, p. 1010-+.cs
dc.identifier.issn1548-7091
dc.identifier.issn1548-7105
dc.identifier.urihttp://hdl.handle.net/10084/152222
dc.description.abstractThe Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a signifcant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesNature Methodscs
dc.relation.urihttps://doi.org/10.1038/s41592-023-01879-ycs
dc.rightsCopyright © 2023, The Author(s)cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleThe Cell Tracking Challenge: 10 years of objective benchmarkingcs
dc.typearticlecs
dc.identifier.doi10.1038/s41592-023-01879-y
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume20cs
dc.description.issue7cs
dc.description.lastpage1020cs
dc.description.firstpage1010cs
dc.identifier.wos000999144000001


Files in this item

This item appears in the following Collection(s)

Show simple item record

Copyright © 2023, The Author(s)
Except where otherwise noted, this item's license is described as Copyright © 2023, The Author(s)