Zobrazit minimální záznam

dc.contributor.authorGanesh, Narayanan
dc.contributor.authorJayalakshmi, Sambandam
dc.contributor.authorNarayanan, Rama Chandran
dc.contributor.authorMahdal, Miroslav
dc.contributor.authorZawbaa, Hossam M. M.
dc.contributor.authorMohamed, Ali Wagdy
dc.date.accessioned2024-02-22T13:18:47Z
dc.date.available2024-02-22T13:18:47Z
dc.date.issued2023
dc.identifier.citationIEEE Access. 2023, vol. 11, p. 58982-58993.cs
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/10084/152231
dc.description.abstractOne of the most complex areas of image processing is image classification, which is heavily relied upon in clinical care and educational activities. However, conventional models have reached their limits in effectiveness and require extensive time and effort to extract and choose classification variables. In addition, the large volume of medical image data being produced makes manual procedures ineffective and prone to errors. Deep learning has shown promise for many classification problems. In this study, a deep learning-based classification model is developed to decrease misclassifications and handle large amounts of data. The Adaptive Guided Bilateral Filter is used to filter images, and texture and edge attributes are gathered using the Spectral Gabor Wavelet Transform. The Black Widow Optimization method is used to choose the best features, which are then input into the Red Deer Optimization-enhanced Gated Deep Reinforcement Learning network model for classification. The brain tumor MRI dataset was used to test the model on the MATLAB platform, and the results showed an accuracy of 98.8%.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Accesscs
dc.relation.urihttps://doi.org/10.1109/ACCESS.2023.3281546cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectimage classificationcs
dc.subjectdeep learningcs
dc.subjectadaptive guided bilateral filter (AGBF)cs
dc.subjectspectral Gabor wavelet transform (SGWT)cs
dc.subjectblack widow optimization (BWO)cs
dc.subjectred deer optimization (RDO)cs
dc.subjectgated deep reinforcement learning (GDRL)cs
dc.titleGated deep reinforcement learning with red deer optimization for medical image classificationcs
dc.typearticlecs
dc.identifier.doi10.1109/ACCESS.2023.3281546
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.lastpage58993cs
dc.description.firstpage58982cs
dc.identifier.wos001017320600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by-nc-nd/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by-nc-nd/4.0/