Show simple item record

dc.contributor.authorBailová, Michaela
dc.contributor.authorBouchala, Jiří
dc.date.accessioned2024-02-23T07:27:39Z
dc.date.available2024-02-23T07:27:39Z
dc.date.issued2023
dc.identifier.citationApplications of Mathematics. 2023, vol. 68, issue 4, p. 425-439.cs
dc.identifier.issn0862-7940
dc.identifier.issn1572-9109
dc.identifier.urihttp://hdl.handle.net/10084/152232
dc.description.abstractWe present a novel approach to solving a specific type of quasilinear boundary value problem with p-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for p = 2. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach.cs
dc.language.isoencs
dc.publisherAkademie věd České republiky. Matematický ústavcs
dc.relation.ispartofseriesApplications of Mathematicscs
dc.relation.urihttps://doi.org/10.21136/AM.2023.0194-22cs
dc.rightsCopyright © 2023, Institute of Mathematics, Czech Academy of Sciencescs
dc.subjectp-Laplacian operatorcs
dc.subjectquasilinear elliptic PDEcs
dc.subjectcritical point and valuecs
dc.subjectoptimization algorithmcs
dc.subjectgradient methodcs
dc.titleA new approach to solving a quasilinear boundary value problem with p-Laplacian using optimizationcs
dc.typearticlecs
dc.identifier.doi10.21136/AM.2023.0194-22
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume68cs
dc.description.issue4cs
dc.description.lastpage439cs
dc.description.firstpage425cs
dc.identifier.wos001026887800004


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record