Zobrazit minimální záznam

dc.contributor.authorZdražil, Lukáš
dc.contributor.authorPanáček, David
dc.contributor.authorŠedajová, Veronika
dc.contributor.authorBaďura, Zdeněk
dc.contributor.authorLanger, Michal
dc.contributor.authorMedveď, Miroslav
dc.contributor.authorPaloncýová, Markéta
dc.contributor.authorScheibe, Magdalena
dc.contributor.authorKalytchuk, Sergii
dc.contributor.authorZoppellaro, Giorgio
dc.contributor.authorKment, Štěpán
dc.contributor.authorCadranel, Alejandro
dc.contributor.authorBakandritsos, Aristides
dc.contributor.authorGuldi, Dirk M.
dc.contributor.authorOtyepka, Michal
dc.contributor.authorZbořil, Radek
dc.date.accessioned2024-02-23T07:31:20Z
dc.date.available2024-02-23T07:31:20Z
dc.date.issued2023
dc.identifier.citationAdvanced Optical Materials. 2023, vol. 11, issue 21.cs
dc.identifier.issn2195-1071
dc.identifier.urihttp://hdl.handle.net/10084/152233
dc.description.abstractOne of the UN Sustainable Development Goals is to ensure universal access to clean drinking water. Among the various types of water contaminants, mercury (Hg) is considered to be one of the most dangerous ones. It is mostly its immense toxicity and vast environmental impact that stand out. To tackle the issue of monitoring water quality, a nanosensor based on carbon dots (CDs) is developed, whose surface is functionalized with carboxylic groups. CDs show Hg2+ concentration-dependent photoluminescence (PL) lifetimes along with an ultrahigh sensitivity and selectivity. The selectivity of PL quenching by Hg2+ is rationalized by performing light-induced electron paramagnetic resonance (LEPR) spectroscopy showing significant perturbation of the CD photoexcited state upon Hg2+ binding. The experimental findings are supported by time-dependent density functional theory (TD-DFT) calculations. These unveiled the emergence of a low-lying charge transfer state involving a vacant 6s orbital of Hg2+ stabilized by relativistic effects.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesAdvanced Optical Materialscs
dc.relation.urihttps://doi.org/10.1002/adom.202300750cs
dc.rights© 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbHcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcarbon dotscs
dc.subjectcolloidal nanomaterialscs
dc.subjectmercury sensingcs
dc.subjecttime-resolved photoluminescencecs
dc.titleCarbon dots enabling parts-per-billion sensitive and ultraselective photoluminescence lifetime-based sensingof inorganic mercurycs
dc.typearticlecs
dc.identifier.doi10.1002/adom.202300750
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue21cs
dc.identifier.wos001025508100001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2023 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH